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ABSTRACT. POPMUSIC — Partial optimization metaheuristic under special intensi-
fication conditions — is a template for tackling large problem instances. This tem-
plate has been shown to be very efficient for various combinatorial problems like
p-median, sum of squares clustering, vehicle routing and map labeling. In terms
of algorithmic complexity, one of the most complex part of POPMUSIC template is
to find an initial solution. This article presents a method for generating an appro-
priate initial solution to the location routing problem by producing in O(n3/2) an
approximate solution to the capacitated p-Median problem. The method is tested
on LRP instances with millions of entities.

1. INTRODUCTION

Location Routing Problems are well known optimization problems. The reader
is referred to [8] for a survey. This reference reports that practical location-routing
problems may involve thousands of entities that have to be serviced from a set
of hundreds of depots. However, high-quality heuristics like GRASP, GRASP with
Path Relinking [12], Memetic Algorithms with Population Management [11], Gran-
ular Taboo Search [13] treats small instances including few hundreds of entities
and a dozen of potential depot locations. Even clustering approaches like [2] are
not considering larger instances.

The goal of this paper is to show that much larger instances can be treated by
embedding these high-quality heuristics in POPMUSIC template.

Several versions of location routing problems exist, and we have considered the
following one in order to generate large and freely available instances based on
the World TSP [19]. Let N be a set of n customers (or entities). Each customer
has a non-negative demand qi. It is supposed that a function d(i, j) measuring
the distance between customers i and j is available. Set N is also the set of
n possible depot locations with unlimited capacity each and where is based an
unlimited vehicle fleet, each vehicle having a given capacity Q. The opening cost
of a depot is D. The cost of a route is the length of traversed edges. The objective
is to find which depots should be opened and which routes should be constructed
to minimize the total cost (depots opening cost plus routes cost) such that:

• Each demand qi must be served by a single vehicle.
• Each route starts and ends at the same depot.
• The total demand of a route does not exceed Q.

The location routing problem (LRP) considered in this article is a simplified ver-
sion of a real problem that was submitted to us several years ago. A company
producing potato chips has the policy of verifying the freshness of its products and
refurnishing itself the shelfs in the selling points. The number of selling points in
Switzerland is more than 32’000. The stores are refurnished with small vehicles
that carry the goods from local depots. Any room that can be rented can be used
as a depot. The depots are refurnished directly from the production places with
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large trucks, but this is done independently from the LRP. To simplify the problem,
we consider that each selling point can be used as depot (with a given renting
cost). In practice, it is observed that a vehicle can service few dozen of selling
points before turning back to the depot. These simplifications allow to work on
problem instances generated on public data whose distribution is not too far from
real life. The aim of the present work is to show the pertinence of POPMUSIC ap-
proach for dealing with large instances (more than 106 entities). The approach
presented in this paper can also be used for solving large problem with additional
complications, provided that an optimization method for solving small instances is
available.

The paper is organized as follows: Section 2 recalls the POPMUSIC template
and show how it can be used in the context of the LRP. The main advantage of
POPMUSIC approach is that the algorithmic complexity for optimizing a given initial
solution is typically linear with the problem size. Such a complexity is lower than
that of other approaches specifically designed for limiting the algorithmic complex-
ity of high-quality heuristics. For instance, the approach of [20] for the Vehicle
Routing Problem, which is a sub-problem of the LRP, includes a step with qua-
dratic algorithmic complexity. The memory requirement of this approach is also
quadratic, meaning that problem instances with, let us say, 105 entities cannot be
solved.

The main difficulty in implementing a POPMUSIC approach for large instances is
to get an initial solution of adequate quality with a complexity that is lower than
O(n2). For instance, the extended Clarke & Wright constructive algorithm used
in [12] has a complexity in O(n3m), where m is the number of potential depot site
(m = n for the instances treated in this article). Section 3 presents a technique
based on solving approximatively a p-median problem with capacity for getting an
initial solution to the LRP in O(n3/2).

Computational results are presented in Section 4. Concluding remarks and
future research avenues are presented in the last section.

2. POPMUSIC TEMPLATE

Our first works on POPMUSIC method start in the beginning of the 90’s [14] with
an application to the vehicle routing problem with capacity (VRP). In this refer-
ence, we used the fact that a subset of VRP tours is also a VRP. By decomposing
a given VRP solution into subsets of independent tours, and solving these sub-
problems in parallel, it is possible to find excellent solutions to VRP instances with
few hundreds of customers. [15] shows that a similar principle can be applied to
centroid clustering problems (sum of squares clustering, p-Median, multi-source
Weber problem). The size of the instances considered in this reference is few
order of magnitude larger: several thousands of entities and thousands of cen-
ters. The implementation discussed in [15] has a complexity growing quadratically
with the number of centers and quasi-linearly with the number of entities. This
complexity remains however quadratic with the number of entities for general p-
Median instances with data given by a n × n matrix. Later, in [16], the POPMUSIC
template was formalized. Algorithm 1 presents the POPMUSIC template.

The basic idea of POPMUSIC is to locally optimize sub-parts of a solution, once
a solution of the problem is available. These local optimizations are repeated until
no improvements are found. Let us suppose that a solution S can be represented
as a set of disjoint parts s1, . . . , sq. Let us also suppose that a distance measure
can be defined between two parts. The central idea of POPMUSIC is to select a
part ss, called seed part, and a number r < q of the closest parts from the seed
part ss to form a subproblem called R. If parts and subproblems are defined in
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Algorithm 1: POPMUSIC template
Data: Initial solution S composed of q disjoint parts s1, . . . , sq
Result: Improved solution S

1 U = s1, . . . , sq;
2 while U 6= ∅ do
3 Select ss ∈ U // ss: seed part;
4 Build a subproblem R composed of the r parts of S which are the closest

to ss;
5 Try to optimize R;
6 if R has been improved then
7 Update solution S;
8 Remove from U the parts not belonging to S anymore;
9 Include in U the parts of optimized subproblem R;

10 else // R not improved
11 Remove ss from U ;

an appropriate way, an improvement in the solution of the whole problem can be
found for every improvement in the subproblem.

To avoid generating twice the same subproblem, a set U of parts is stored. U
contains the seed parts that can be used to define a subproblem that can poten-
tially improve the solution. Once U is empty, all subproblems have been examined
without success and the process stops. If subproblem R has been successfully
improved, a number of parts from s1, . . . , sq have been changed and further im-
provements may be found in the neighborhood of these parts. In this case, all the
parts used for building R are inserted in U before continuing the process.

Potentially, the complexity of this template can be very high since set U is not
reduced at each iteration. However, several implementations [1, 15, 18] shown
empirically that the number of iterations of an algorithm based on this template
grows quasi-linearly with q.

To translate this template into a (pseudo-) code for a given problem, several
choices must be made:

• The procedure for obtaining the initial solution
• The definition of a part
• How a seed-part is selected
• The definition of the distance between parts for creating a subproblem
• The improvement procedure for optimizing subproblems

For the LRP, various definitions for a part can be imagined:
• An entity
• A tour (with all entities constituting the tour)
• A depot (with all tours and entities assigned to the depot)

In the present work, we choose to decompose a solution into tours. So, a part
is a tour. The distance between two parts is the minimal distance between two
entities belonging to different tours. In order to filter the number of candidate parts,
only the tours connected to the r depots that are the closest from the seed part
are considered.

The set U is managed as a stack, this means that the last part that has been
introduced in U will be the next to be chosen as seed-part. In the present work, we
have also tried to select the seed-part randomly in U . The improvement procedure
for the subproblems, which are therefore multi-depot VRP (MDVRP), is based on
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(a) (b) (c) (d) (e) (f)

FIGURE 1. Main phases of the proposed method illustrated on a small instance
including entities on Corsica and Sardinia Islands. 1(a) Finding superclusters on a
sample of entities. 1(b) Finding superclusters on all entities. 1(c) Decomposition
of supercluster into clusters and building TSP on clusters. 1(d) Splitting large TSP
tours. 1(e) Merging tours and creating a feasible MDVRP solution. 1(f) Opimizing
MDVRP solution with POPMUSIC.

taboo search. The last performs t iterations for a MDVRP containing t entities. The
moves considered in this taboo search are the swap of two entities belonging to
different tours or the move of an entity from one tour to another. In some situations,
this kind of move allows to reduce the number of tours (consequently the number
of vehicles used). The implementation of this taboo search follows the lines of
those used in [14]. The complexity of this implementation is O(t3).

The only parameter of POPMUSIC is r, the number of parts put together to cre-
ate a subproblem. The value r = 6 has been chosen for all experiments in this
paper. This value is a good trade-off between the ability of taboo search to find
good solutions in a reduced computational effort. Indeed, if subproblems are too
small, improvements cannot be found and if the subproblems are too large, their
improvements can take a prohibitive computational effort.

Since r is chosen independently from the problem size and since a quasi-linear
number of POPMUSIC iterations is observed, the body of POPMUSIC is also quasi-
linear. So, the most difficult portion of an adaptation of POPMUSIC to the LRP is to
get a feasible initial solution of decent quality. In terms of algorithmic complexity,
the initialization is the most complex part. The next section shows how to generate
a feasible initial solution of decent quality in O(n3/2).

3. EFFICIENT GENERATION OF A SOLUTION TO THE LRP

Since the instances considered in this article are geometrical ones (coordinates
on the earth ellipsoid), it would have been possible to use computational geometry
algorithms for building a feasible LRP solution, for instance with the help of a
Delaunay triangulation. The last can be obtained in O(n logn). We chose a more
general method, where we make the hypothesis that we only have a function d(i, j)
providing the distance between entities i and j. In this work, we use the Euclidean
distance d(i, j) =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

Algorithm 2 has been designed for finding a feasible LRP solution that is suitable
for initial POPMUSIC solution. The main phases of this algorithm are illustrated on
Figure 1.

The most difficult point of this algorithm is the implementation of a heuristic
procedure for finding good solutions to the capacitated p-median problem (CPMD).



POPMUSIC FOR THE WORLD LOCATION ROUTING PROBLEM 5

Algorithm 2: Generating a feasible LRP solution for large instances
Data: n entities with quantity qi and distance measure d(i, j), i, j = 1, . . . , n
Result: Feasible LRP solution
// Sampling

1 Take a sample E of 20
√
n entities (Figure 1(a));

// Center location for super-clusters
2 Solve a relaxation of a p-Median with capacity (CPMD) on E with p =

√
n ;

// Super-cluster building (Figure 1(b))
3 Assign all n entities to the closest among p centers found at previous step ;
// Clusters building

4 for k = 1, . . . ,
√
n do

5 Decompose super-cluster SCk into pk = d
∑
i∈SCk

qi/T e clusters by
solving a relaxation of a CPMD

// TSP building (Figure 1(c))
6 for all clusters obtained at previous step do
7 Find a traveling salesman tour on the cluster entities

// Splitting large TSP (Figure 1(d))
8 for all tours found at previous step with length larger than D do
9 Decompose the entities of the tour into 1, 2, . . . clusters by solving

CPMDs.
10 Find a TSP tour for each cluster and for each decomposition.
11 Retain the decomposition for which the sum of TSP lengths + d ·D is the

lowest, where d is the number of clusters in the decomposition
// Locating depots

12 Open a depot for each tour (at the position of CPMD center);
13 repeat
14 for each depot do
15 Try to merge the depot with a depot at distance less than D; the tours

attached to the removed depot are attached to the new depot position
with a cheapest insertion rule. The merging of 2 depots is done in a
greedy manner, if the resulting cost is diminished.

16 until No merge with cost decrease exists;
// Feasible MDVRP (Figure 1(e))

17 Cut each tour for which the sum of quantities is larger than Q (vehicle
capacity) into 2 tours;

The CPMD can be formulated as follows, where xij are variables indicating if entity
i is assigned to center j (xij = 1) or not (xij = 0):
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minimize
n∑
i=1

n∑
j=1

d(i, j) · xij

subject to
n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}(1)

xij ≤ xjj ∀i, j ∈ {1, . . . , n}(2)
n∑
j=1

xjj = p(3)

n∑
i=1

qi · xij ≤ Q ∀j ∈ {1, . . . , n}(4)

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}(5)

The objective is to minimize the star distances (sum of the distance of all entities
to their allocated center). Set of constraints (1) ensures that an entity is allocated to
a single center. Set of constraints (2) ensures that an entity cannot be allocated to
a center that is not opened. Note that variable xjj indicates if entity j is considered
as a center. Constraint (3) ensures that exactly p centers are opened. Set of
constraints (4) ensures that a center does not accept a demand larger than its
capacity. Note here that all centers have the same capacity Q.

Finding a feasible solution to the CPMD is NP-complete, since the bipartition
problem can be polynomially transformed into CPMD. In a first phase, solutions
violating slightly constraint (4) can be admitted since the vehicle capacity limitation
is satisfied by splitting overloaded tours in step 17 of Algorithm 2. To avoid splitting
too many tours and a degradation of LRP solution, we suggest to replace vehicle
capacity Q in constraint (4) by a target value T ≤ Q. This value is a parameter of
the method and allows to take into consideration the variance of the demands. To
find a solution slightly violating constraints (4), we consider a Lagrangean relax-
ation of CPMD:

maximizeλ≥0minimize x

n∑
i=1

n∑
j=1

d(i, j) · xij +

n∑
j=1

λj · (
n∑
i=1

qi · xij − T )(6)

subject to (1) (2) (3) (5)

A gradient method can be used to find good λ’s values, by adjusting the value of
λj as follows: λj ← max(0, λj+`(

∑n
i=1 qi · xij − T )) , where ` is the step length. In

other words, penalty λj is increased if constraint (4) is violated for center j and it is
decreased (without taking negative values) if center j has still additional capacity.
Step length ` must be proportional to distance unit and inversely proportional to
capacity unit.

To find good solutions to (6), we propose Algorithm 3. This algorithm alternates
the allocation of entities to centers, the centers repositioning and the λ’s update.

Line 2 of Algorithm 3 introduces variable f which is used for setting gradient
step length. Initially, the step length ` is given by the average distance of entities
to centers divided by target cluster capacity. This length is diminished at each
iteration by multiplying f by 0.99.

Preliminary computational experiments showed that the solution is stabilized
after few hundreds of iterations: All entities are allocated to their nearest center
(distance + penalty), the centers are positioned at best among the entities and the
λ’s are not changing enough for modifying the entities allocations. So, we decided
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Algorithm 3: Generating an almost feasible solution to the CPMD
Data: n entities with quantity qi, (i = 1, . . . , n), p, T
Result: Allocation variables x∗: p clusters with quantities close to T

1 Randomly choose p centers among the n entities
2 f = 1.0; λj = 0; j = 1 . . . , n;
3 for 150 iterations do
4 Allocate entities to the closest center (with penalty; update xij variables);
5 for Each of the p clusters do
6 Find the best position of the center among cluster entities (update xjj

variables)
7 if Current solution x is better than x∗ then
8 x∗ ← x

9 f ← 0.99 · f ;
10 for j = 1, . . . , p do
11 λj ← max (0, λj + f · 1n (

∑n
i=1

∑n
j=1 d(i, j) · xij) · 1

T (
∑n
i=1 qi · xij − T ))

to perform a total of 150 iterations. At Line 7, a solution is considered to be better
if it diminished the number of clusters for which the sum of quantities is larger than
Q, or, for the same number of cluster capacity violations, if the sum of distances is
diminished.

As the results of Algorithm 3 depends on a random positioning of the centers,
the last is executed 5 times and the best of 5 returned solutions is retained. Finally,
for diminishing the number of clusters for which the allocated quantity is larger than
Q, a local search is applied. This local search transfers repeatedly an entity from
an overloaded cluster to its second nearest center, if the last has enough capacity
for accepting this entity. The local search stops when no improving move is found.

3.1. Complexity analysis of Algorithm 3. Applied to a CPMD instance with n
entities and p centers, the complexity of Algorithm 3 is O(n · p + n2/p). Indeed,
Step 4 can be trivially implemented in O(n · p) and Step 6 in O(n2/p2) since each
cluster has n/p entities on average. The complexity of all the other steps is lower.

3.2. Complexity analysis of Algorithm 2. Once a CPMD procedure is available,
finding an initial LRP solution of adequate quality is relatively easy, but the size of
subproblems to solve must be carefully chosen in order to maintain the complexity
as low as possible. The sampling of entities in Step 1 is not there for diminishing
the global complexity of Algorithm 2, but for speeding it up. Finding the positions
of supercluster centers consists in calling Algorithm 3 with O(

√
n) entities and

√
n

centers. The complexity of Step 2 is therefore O(n). Without sampling, this phase
is in O(n3/2) and would take most of the computational time.

The assignment of all n entities to the nearest of
√
n (super-)center in Step 3

can be trivially implemented in O(n3/2).
The decomposition of super-clusters into clusters in Step 4 consists in calling

O(
√
n) times Algorithm 3 with O(

√
n) entities and

√
n centers. Therefore, the

complexity of finding O(n) clusters respecting approximatively the capacity Q of
the vehicles can be done in O(n3/2).

For a given value of Q, the maximal number of entities per tour is also fixed.
This means that finding all TSP tours and eventually splitting long tours (Steps 6
and 8) can be done in O(n).
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TABLE 1. Characteristics of the problem instances considered in
this paper. Entities are chosen among those of the World TSP
data.

Instance
number

Number
of entities

Minimal
longitude

Maximal
longitude

Minimal
latitude

Maximal
latitude

1 17,237 -5 15 20 40
2 46,750 -5 15 30 45
3 113,193 15 30 40 50
4 115,858 -5 15 40 50
5 260,374 -5 30 30 50
6 1,904,711 -180 180 -90 90

The complexity of Step 16 (merging depots) depends on depot opening cost D.
It is useless to merge two depots at a distance larger than D. Making the hypothe-
sis that, for all depots, there is a constant number of other depots at distance lower
than D, Step 16 can be implemented with a complexity lower than O(n2). How-
ever, if the opening cost is very high, this step could degenerate in O(n2). If the
number of depots is low (in O(

√
n)), another depot positioning strategy should be

adopted, for instance by solving a p-Median problem. Such an approach has been
suggested in [13]. However, the instances proposed in this work have a value of D
relatively limited and we observed a computational effort for this step that is less
than 1.2% of global computational effort.

Finally making the initial solution feasible in Step 17 can be trivially implemented
in O(n). So, the complexity of finding an initial solution to the LRP is in O(n3/2).
This complexity is empirically verified by numerical experiments in the next section.

4. NUMERICAL RESULTS

Since there are no large size LRP instances publicly available, we have gener-
ated new benchmarks on the base of the World TSP data [19]. 6 different entities
sets have been considered, by taking various windows (longitude, latitude) among
the entities of the World TSP. Table 1 gives the main characteristics of these 6
instances which are illustrated in Figure 2.

Each city i of the TSP World instance is specified by its longitude λi and its
latitude θi, given in degrees and decimal form. Our world LRP instance is specified
by its Euclidean xi, yi and zi positions (expressed in meters) computed with the
Geodetic Reference System (GRS80 [4]):
xi = ri ∗ cos(λi) ∗ cos(θi)
yi = ri ∗ sin(λi) ∗ cos(θi)
zi = ri ∗ (1.0− e2) ∗ sin(θi)

where ri = 6378137.0/
√

1.0− e2 ∗ sin2(θi), and e2 = 0.00669438.
For testing the sensitivity of our method with respect to the type of demands

for the entities, two types of problem instances were considered. The first type of
instances (unit demands) have a uniform demand of 1 for all entities. The second
type of instances (variable demands) have demand qi for each entity that is gener-
ated using a pseudo-random generator qi = (107 · b|xi|c+ 97 · b|yi|c+ 163 · b|zi|c)
mod 29+1. For the second type, we can consider that the quantities are randomly,
uniformly generated between 1 and 29 with an average of 15.

For testing the sensitivity of our method with respect to the vehicle capacity, we
have considered Q = 10; 20; 40 for unit demand instances and Q = 150; 300; 600
for variable demand instances (so, a vehicle tour visits 10, 20 or 40 entities on
average).
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(a) Instance 1 (b) Instance 2 (c) Instance 3

(d) Instance 4 (e) Instance 5

(f) Instance 6

FIGURE 2. The 6 regions of the world considered in this paper for
creating new LRP benchmarks

Finally, for testing the sensitivity of our method with respect to the depot opening
cost, we have considered D = 50, 000; 100, 000; 200, 000.

4.1. Parameter settings. Since a method based on POPMUSIC embeds several
algorithms, we provide here the various choices we made for the options and pa-
rameters used.

4.1.1. POPMUSIC body.
• A part: a vehicle tour
• Distance between parts: minimal distance between 2 entities belonging to

different tours
• Size of MDVRP subproblems: r = 6
• MDVRP improvement procedure: Taboo search
• U set is managed as a stack
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4.1.2. Taboo search for MDVRP. The taboo search used for optimizing MDVRP
instances follows the lines of [14].

• Moves: Transfer an entity from one tour to another or exchange 2 elements
belonging to different tours

• Number of iterations: t for an instance with t entities
• Taboo status: moving again an entity
• Taboo duration: 0.5 · t · u3 + 0.1t where u is a random number uniformly

distributed between 0 and 1
• Aspiration criterion: a taboo move improves the best solution or a transfer

move empties a tour

4.1.3. CPMD.
• Number of iterations (allocation — λ modification — relocation): 150
• Gradient step size decrease: 0.99
• Target capacity T for the clusters: T = Q for unit demand instances and
T = Q− 10 for variable demand instances.

• The procedure is repeated 5 times and the best solution is taken

4.2. Analysis of results. We show the sensitivity of our method with respect to
the instances, parameter settings and options by considering a standard problem:
The demands are variable, Q = 300 and D = 100, 000. Additional computational
results on different problem instances, obtained by varying the values of Q, D
and demands are provided in Section 4.7. The method was implemented in C,
compiled under Windows 7 with gcc compiler and -O2 option. Only one core of
Intel i7 (930, 2.83GHz) was used. The memory used by our implementation never
exceed 1.5Gb for the largest instance. Table 2 provides for all 6 instances of
different size the following informations and numerical values observed.

• The number of entities
• A lower bound on the number of vehicles (d

∑
qi/Qe)

• The number of clusters created
• The total length of TSP tours, before splitting
• The number of TSP obtained after splitting long tours
• The number of depots remaining after merging
• The total length of tours of the initial feasible MDVRP solution
• The total length of tours after improvement with POPMUSIC
• The number of vehicles used in MDVRP improved solution
• Total cost of MDVRP improved solution (which is equal to total length plus

number of depots times depot cost)
• A lower bound of optimal total cost
• The CPU time for solving the CPMD (superclusters + clusters)
• The CPU time for POPMUSIC optimization
• The total CPU time
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ε

D

D

D

FIGURE 3. A LRP instance for which a minimum spanning tree is,
asymptotically, a lower bound to the optimal solution. The weight
of the spanning tree is 3D − ε while the length of an optimal LRP
solution is 3D. At least one depot must be opened, for a cost of
D. So, the lower bound is 4D − ε while optimum LRP cost is 4D.

Since these large instances are new, it is difficult to have an idea about the
quality of solutions obtained. Indeed, good lower bound are hard to find for theses
large instances, given that classical mathematical models embeds 3-index vari-
ables. The purpose of this article is not to study lower bounds for large LRPs. A
simple lower bound can be obtained by computing a spanning tree MST of mini-
mum weight. Then, all the edges of MST that are larger than depot opening cost
D are removed to obtain a forest F . A depot is opened for each connected com-
ponent of F . The lower bound is given by the cost of the edges of F plus depot
opening costs. Such a lower bound is tight for special instances, as shown in Fig-
ure 3, where the lower bound is 4D−ε and the optimal LRP solution has a value of
4D. The lower bound is also tight for instances with all entities separated by a dis-
tance larger than D. In this case, F has no edges. Without making assumptions
on the distance measure between entities, the computation of a lower bound is at
least in Ω(n2). For the largest instance, the time for computing the lower bound
given in Table 2 is higher than the CPU time for POPMUSIC optimization. The quality
of the lower bounds is certainly very bad.

Let us mention however, that the length (line “Length POPMUSIC”) of the solu-
tion for Instance 6 (corresponding to the world TSP data) is about 26% above the
length of optimal TSP tour. This length is neither an upper bound to the LRP opti-
mum length (since there is a higher number of travel in a LRP solution due to the
capacity constraints implying additional travels to the depots) nor a lower bound
(since the TSP tour may have travels larger than D, the opening cost of a depot).
For instance, for D = 15, 000 (about 4 times the average travel length between 2
TSP cities), the total length is lower than the optimum TSP length.

In this table, we see that the initial MDVRP solution is improved by about 10%
by POPMUSIC. The number of vehicles in the final solution is 6.1% to 15.5% above
the minimum number of vehicles. Knowing that several depots only service 1 or
2 entities (in sparse regions), an average vehicle load above 90% means that the
vehicle tours are very constrained by their capacity. Even if the upper bounds are
near 2 times the value of the lower bounds, we are confident that these results are
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not too bad, after having made the following experiment: We took few of the largest
academic VRP instances publicly available, i.e. those proposed by [6, 20] and we
observed the solutions quality obtained with the following method: The entities
are first clustered with our CPMD approach (trying different T capacity targets for
having sets of entities not larger than vehicle capacity Q) and a TSP is solved for
each cluster (+ the unique depot). For these instances with 420 and 3,000 entities,
the value of the feasible VRP solutions observed were typically 8% to 10% above
the best solutions known, reported in [7, 20]. The computational time was less
than 0.4 seconds for the instance with 420 entities and about 10s for the instances
with 3,000 entities. For these instances, the best solutions known are 117% and
1010% above the lower bound proposed above. Figure 4 illustrates the solutions
obtained with this experiment.

(a) Largest instance of [6] (b) First instance of [20]

FIGURE 4. Solutions of 2 of the largest VRP instances publicly
available, obtained just by solving a TSP on the clusters produced
by our CPMD procedure. No further improvement of the tours with
a local search. The computational time is 0.37 second for 4(a) and
10.4s for 4(b). The tour length is about 8% above best solutions
known for both instances.

4.3. Sensitivity with respect to problem size. Figure 5 provides the computing
times of the most important steps of our algorithm as a function of the problem
size. In this figure, we remark that:

• The building of superclusters and decomposing them into clusters requires
a computational effort growing slightly less than the O(n3/2) expected.

• The placement of depots by merging TSP tours requires a computational
effort in O(n3/2).

• The improvement of all subproblems grows linearly with n. This step re-
quires the largest computational effort, even for the largest instance. As
observed for centroid clustering [15] and map labeling [1], the number of
subproblems optimized in POPMUSIC seems to grows linearly with problem
size.

4.4. Sensitivity with respect to problem types. Figure 6 provides the average
vehicle load for various instances. The vehicle load is the ratio between the sum
of quantities on a tour and the vehicle capacity. We see in this figure that the
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FIGURE 5. Evolution of computational effort as a function of prob-
lem size, for various parts of the algorithm.
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load is systematically above 0.85. For VRP instances, such a load is relatively
high. For the LRP the load mainly depends on the sparsity of the entities. The
smallest and the largest instances are characterized by large zones with very few
entities, encouraging the opening of depots for single entities. For unit demand
instances, the vehicle load is very high, reaching 0.97 for dense instances. For
variable demand instances, the vehicle load depends on the target quantity used
for creating clusters. Again, for dense instances, vehicle loads are almost reaching
the target.

Figure 7 analyses the influence of solution length and cost with respect to target
volume. For variable demand instances, this figure plots the ratio of the total cost
over the best LRP length found for various values of target volume. If target volume
T ≤ 0.95Q, there is a lost of volume in the vehicles and their number is higher,
implying a higher number of trips to the depots and also a higher number of depots.
This tends to increase the final cost even if POPMUSIC starts with a LRP solution
with a shorter length.

If target T ≥ Q, there are more clusters with volume above vehicle capacity, im-
plying a higher number of TSP that are split. The clusters are also less compact.
However, we see that POPMUSIC is able to improve bad solutions with a large num-
ber of TSP tours that are split and the final cost is relatively insensitive to T value.
This suggests that T parameter could be removed (setting T = Q) for the problem
treated in this article. However, T parameter could be important for other types of
problems, for instance if there are fixed costs for using vehicles. For D = 100, 000,
we see that the cost for opening the depots corresponds to 30% to 40% of the
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FIGURE 6. Sensitivity of final vehicle load with respect to target
cluster volume
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length of the tours. For the final total cost, we see that a target 0.9Q ≤ T ≤ Q
seems to be a good compromise.

Figure 8 plots the computational time as a function of vehicle capacity Q. In
this figure, we see that the increase of computational effort is proportional to Q3,
as expected. Indeed, the average number of entities per tour linearly grows with
Q. Since MDVRP subproblems solved in POPMUSIC have a fixed number r of tours
and since the taboo search has a complexity growing with the cube of the number
of entities, the observation are coherent with complexity analysis.

4.5. Sensitivity with respect to depot opening cost. Since the basis of sub-
problem building are tours (parts in POPMUSIC terminology), our method seems to
be not sensitive to depot opening cost. Indeed, the size of subproblems so defined
is independent on D. The only dependency we can observe concerns the compu-
tational time needed for merging depots. The larger D is, the higher the number of
depots are merged. Figure 9 plots the evolution of computational time of Step 16
of Algorithm 2 as a function of problem size for various D values. We see that the
merge procedure takes a computational time growing proportionally to n3/2 and
is almost independent of D. The picture would certainly have been different for
another definition of parts, including all entities attached to a given depot.

4.6. Sensitivity with respect to initial solution and improvement procedure.
Figure 10 analyses the influence of using a better initial solution or using a bet-
ter improvement procedure. For getting a better initial solution, we applied a
POPMUSIC algorithm after having decomposed the problem into clusters, along the
lines of [18]. With such a procedure, CPMD solutions are improved by about 5%.
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FIGURE 7. Influence of target clusters volume on the length and
cost of final solution. All problem instances with variable demands
and Q = 300. Lengths and costs have been divided by the best
LRP length observed for each instance.
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For getting better solutions to sub-problems we multiplied by 2 or by 4 the num-
ber of taboo iterations in the improvement procedure (implying computational times
multiplied by the same ratio). Figure 10 provides the ratio of the solution cost of
the improved versions with the cost of our algorithm with standard parameters. We
see that the improvements are very low, generally below 0.5%, with the exception
of the smallest instance for which the improvement reaches 1.2%. Such an im-
provement is mainly due to a better CPMD solution that was improved by 10%.
So, it seems that our method is relatively insensitive to initial solution, as soon as
the last is of decent quality. The clustering approach is very important for reach-
ing an appropriate quality. Also, by allowing more iterations to the improvement
procedure, the global improvements are moderate. However, we think that bet-
ter solutions might be obtained by using a taboo search that relocates the depot,
i.e. by using an improvement procedure that solves LRP instances rather than
MDVRP as we did.

4.7. Detailed computational results. As mentioned above, by taking various
windows (longitude, latitude) among the entities of the World TSP, six different
entities sets have been considered. The standard instances have variable cus-
tomer demand (1 ≤ qi ≤ 29), vehicle capacity Q = 300 and depot opening cost
D = 100, 000. The standard parameter setting has a target value T = Q − 10 for
variable demand and T = Q for fixed demand. The number of taboo iterations in
standard runs is t = n and the set U of unoptimized part is managed as a stack.
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FIGURE 8. Evolution of computational effort as a function of vehi-
cle capacity.
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For each entities sets, we also used other values for vehicle capacity (Q =
10; 20; 40 for unit demand instances and Q = 150; 600 for variable demand in-
stances) and depot opening cost (D = 50, 000; 200, 000), creating a total of 48 test
instances.

In addition, we provide computational results obtained for the standard instances
by varying the target capacity parameter (T = 285; 295), the number of taboo itera-
tions (t = 2n and t = 4n), the improvement of the decomposition into clusters with
POPMUSIC technique (CPMD*) and set U management (random choice).

Table 3 provides the computational times for generating the initial solution.
Table 4 provides the computational times for improving the initial solution with
POPMUSIC. Table 5 provides the improvement of the cost of the solution, expressed
in percent, that has been obtained by applying POPMUSIC. Table 6 provides the
final cost obtained after POPMUSIC run. This last table shows that POPMUSIC is rel-
atively insensitive to the method parameters: even working much more for getting
a better initial solution (CPMD*) has little impact on the final cost. Managing U set
randomly tends to speed-up the method a little bit and to produce slightly worse
solution, but this is not systematic.

5. CONCLUSIONS

We have shown in this article that POPMUSIC template can be applied to LRP
instances of several order of magnitude larger than those commonly treated in the
literature. POPMUSIC strategy is able to heuristically solve large instances (more
than 106 customers) of a location routing problem. The algorithmic complexity of
POPMUSIC depends more on the generation of a decent initial solution than on the
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FIGURE 9. Influence of computational effort for merging depots
for various values of D (depot opening cost).
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TABLE 3. Computational time to get a feasible initial solution, in
seconds on one Intel i7 core.

Problem size
Variant 17,237 46,750 113,193 115,858 260,374 1,904,711

Standard 7 23 68 66 185 3,045
D = 50, 000 7 22 62 64 182 2,984
D = 200, 000 7 24 66 68 184 2,896

Q = 150 8 26 82 80 251 5,435
Q = 600 10 31 73 76 189 2,320
Q = 10 7 23 72 74 233 4,960
Q = 20 7 23 63 66 175 2,811
Q = 40 10 28 74 75 188 2,156
t = 2n 7 22 63 66 178 2,966
t = 4n 7 22 63 66 180 2,962

CPMD* 355 1,052 2,705 2,963 5,757 36,635
T = 285 7 22 64 69 179 2,895
T = 295 8 22 64 66 183 2,931

U : random 7 22 63 64 178 2,820

optimization of this solution with a local search. This article presents a way to
generate such an initial solution by solving approximatively a CPMD. A solution to
this problem can be obtained in O(n3/2) without using geographical informations
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FIGURE 10. Influence of initial solution quality and improvement procedure
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TABLE 4. Computational time to improve the initial solution with
POPMUSIC, in seconds on one Intel i7 core.

Problem size
Variant 17,237 46,750 113,193 115,858 260,374 1,904,711

Standard 362 1,093 3,034 3,108 6,712 44,553
D = 50, 000 337 1,000 2,657 2,702 5,977 41,169
D = 200, 000 415 1,257 3,371 3,376 7,289 49,584

Q = 150 70 211 593 576 1,356 12,051
Q = 600 3,090 9,646 24,212 27,417 54,824 291,605
Q = 10 86 250 682 700 1,563 12,514
Q = 20 594 1,925 5,432 5,607 11,724 74,712
Q = 40 4005 14,896 45,897 46,231 101,841 600,830
t = 2n 761 2,226 6,037 6,056 13,253 87,959
t = 4n 1548 4,508 11,913 12,110 27,099 176,877

CPMD* 88 331 1,102 1,076 2,799 43,211
T = 285 392 1,163 3,117 3,297 6,743 46,824
T = 295 423 1,096 2,859 3,013 6,362 45,155

U : random 281 788 1,936 2,056 4,489 32,340

other than for computing a distance between 2 entities. This allows to deal with
problem instances including millions of entities.

5.1. Research perspectives. There are potential improvements for our method,
for instance by using a less basic improvement procedure for solving subproblems,
like the iterative searches proposed in [13]. Then, the influence of the definition
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TABLE 5. Improvements obtained with POPMUSIC over initial solu-
tion, expressed in percent.

Problem size
Variant 17,237 46,750 113,193 115,858 260,374 1,904,711

Standard 7.3 8.5 9.2 9.3 9.5 9.8
D = 50, 000 6.8 7.3 7.7 7.9 8.3 8.5
D = 200, 000 9.2 9.7 10.3 10.3 10.6 10.7

Q = 150 7.4 7.7 8.9 8.6 9.4 9.4
Q = 600 9.3 10.1 10.3 10.7 9.8 9.4
Q = 10 6 6.1 6.1 6.4 6.2 6.3
Q = 20 8.2 9.3 9.3 9.5 8.8 7.6
Q = 40 8.8 9.9 10.8 11 10.2 8.1
t = 2n 7.8 8.8 9.6 9.6 9.8 10
t = 4n 8.2 9.1 9.8 9.9 10.1 10.3

CPMD* 4.9 5.3 5.6 5.8 5.1 4.2
T = 285 7.7 9 9.3 9.7 9.3 10.2
T = 295 7.8 8.5 9.3 9.6 9.4 9.3

U : random 7.4 8.5 8.9 9 9.3 9.6

TABLE 6. Absolute value of final cost.

Problem size
Variant 17,237 46,750 113,193 115,858 260,374 1,904,711

Standard 120,606,754 262,180,587 430,139,462 476,054,191 1,095,478,899 11,971,512,294
D = 50, 000 105,527,279 233,571,406 380,297,149 422,298,538 970,139,834 10,751,806,821

D = 200, 000 139,253,415 300,496,000 496,943,248 548,456,575 1,261,973,725 13,622,702,787
Q = 150 149,257,348 336,631,365 568,728,130 627,504,037 1,435,686,930 15,111,422,493
Q = 600 104,311,652 221,590,472 353,452,289 392,244,201 905,311,798 10,226,935,742
Q = 10 146,590,678 329,349,802 555,585,993 612,466,586 1,399,924,584 14,768,168,944
Q = 20 118,581,395 257,852,000 424,244,255 470,534,133 1,079,931,492 11,824,034,476
Q = 40 104,962,416 221,425,429 350,645,458 390,351,803 898,740,118 10,137,017,763
t = 2n 120,203,176 261,565,818 428,967,967 475,088,562 1,092,747,557 11,949,671,929
t = 4n 119,857,545 261,140,192 428,271,733 474,250,824 1,090,435,064 11,923,729,093

CPMD* 119,110,324 261,487,420 429,838,045 475,300,850 1,094,862,284 11,934,236,071
T = 285 120,374,633 261,835,995 431,088,578 476,021,788 1,094,107,559 11,921,201,625
T = 295 120,982,470 262,103,904 431,304,976 477,655,689 1,099,990,473 12,061,445,385

U : random 120,529,721 262,226,401 430,977,509 476,931,265 1,095,878,122 11,985,158,109

of proximity between 2 tours has to be studied, as well as the management pol-
icy of the seed-parts. A more elaborated management could allow to parallelize
the method. It seems to be possible to solve problems in O(

√
n) using O(n) pro-

cessors. Then, the efficiency of POPMUSIC template should be studied for problem
instances of higher dimension (e.g. adding time windows). For such instances, the
definition of distance between 2 parts of a solution must be revisited. Finally, the
approach should be tried on other problems like capacitated or two-echelon LRPs,
truck and trailer routing problems with satellite depots or periodic variants of these
problems [3, 5, 9, 10, 12, 17].
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APPENDIX: DETAILED COMPUTATIONAL RESULTS

As mentioned above, by taking various windows (longitude, latitude) among the
entities of the World TSP, six different entities sets have been considered. For
each set, we also used different values for vehicle capacity (Q = 10; 20; 40 for unit
demand instances andQ = 150; 300; 600 for variable demand instances) and depot
opening cost (D = 50, 000; 100, 000; 200, 000), creating a total of 48 test instances.
In addition, we provide computational results obtained by varying target capacity
parameter (Qt = 285; 295 for the standard instances with Q = 300, D = 100, 000
and variable demands).

Tables 8 and 9 report detailed computational results for one independent run
of POPMUSIC for the World Location Routing Problem applied to first set of 24 test
instances. Tables 10 and 11 report computational results for the remaining 24 test
instances. Tables 12 and 13 report results for standard test instances but different
values of target capacity parameter. Each table is divided in 2 or 4 sections. For
each section, the first line specifies values for vehicle capacity Q, target capacity
Qt, depot opening cost D and the type of demand. The second line in the section
is the caption of each column. The meaning of the caption of each column is
described in Table 7.
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TABLE 7. Table is divided in two parts. First part shows column
legends in order they appear in Tables 8, 10 and 12. Second part
shows column legends in order they appear in Tables 9,
11and 13.

Caption Short description
I. Instance number.
sum d. Sum of all demands:

∑n
i=1 qi.

lb v. Vehicle lower bound: d
∑n

i=1 qi
Q e.

#s.c. Number of super clusters (Line 2 of Algorithm 2).
obj. s.c. Objective function value of super clusters solution (Line 3 of Al-

gorithm 2).
cpu Time in seconds needed to create super clusters solution.
#c. Number of clusters (Line 4 of Algorithm 2).
obj. c. Objective function value of clusters solution (Line 4 of Algo-

rithm 2).
#v.c. Effective number of vehicles needed for cluster solution.
lb v.s.c. Lower bound on the number of vehicles considering #s.c. clus-

ters.
cpu Time in seconds needed to create all clusters solution (Line 4 of

Algorithm 2).
length tsp Length of all TSPs.
cpu Time in seconds needed to create all TSPs (Line 6 of Algo-

rithm 2).
#v.s. Number of vehicles after split.
cpu Time in seconds needed to split all tours (Line 8 of Algorithm 2).
I. Instance number.
#d. Number of depots (Line 12 of Algorithm 2).
l. tsp Length of all merged TSPs.
cpu Time in seconds needed to merge TSPs.
l. mdvrp Length of initial MDVRP (Line 8 of Algorithm 2).
#v. Number of vehicles used in MDVRP initial solution.
cpu Time in seconds needed to make feasible MDVRP solution

(Line 8 of Algorithm 2).
l. pop Length after POPMUSIC.
#v. pop Number of vehicles after POPMUSIC.
cpu pop Time in seconds needed to execute POPMUSIC.
cost Total cost: length plus #d ×D.
l./v. Ratio between tour length and number of used vehicles (l.

pop/#v. pop).
v./d. Ratio between number of used vehicles and number of depots

(#v. pop/#d.)
total cpu Total time in seconds to execute proposed method for a LRP so-

lution.
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