
Neural Networks 20 (2007) 1095–1108
www.elsevier.com/locate/neunet
Analysis and test of efficient methods for building recursive deterministic
perceptron neural networks

David A. Elizondoa,∗, Ralph Birkenheada, Mario Góngoraa, Eric Taillardb, Patrick Luyimaa

a Centre for Computational Intelligence, School of Computing, Faculty of Computing Sciences and Engineering, De Montfort University, Leicester, UK
b EIVD, University of Applied Sciences of Western Switzerland, Route de Cheseaux 1, Case postale, CH-1401 Yverdon, Switzerland

Received 20 June 2006; accepted 12 July 2007

Abstract

The Recursive Deterministic Perceptron (RDP) feed-forward multilayer neural network is a generalisation of the single layer perceptron
topology. This model is capable of solving any two-class classification problem as opposed to the single layer perceptron which can only solve
classification problems dealing with linearly separable sets. For all classification problems, the construction of an RDP is done automatically
and convergence is always guaranteed. Three methods for constructing RDP neural networks exist: Batch, Incremental, and Modular. The Batch
method has been extensively tested and it has been shown to produce results comparable with those obtained with other neural network methods
such as Back Propagation, Cascade Correlation, Rulex, and Ruleneg. However, no testing has been done before on the Incremental and Modular
methods. Contrary to the Batch method, the complexity of these two methods is not NP-Complete. For the first time, a study on the three
methods is presented. This study will allow the highlighting of the main advantages and disadvantages of each of these methods by comparing
the results obtained while building RDP neural networks with the three methods in terms of the convergence time, the level of generalisation, and
the topology size. The networks were trained and tested using the following standard benchmark classification datasets: IRIS, SOYBEAN, and
Wisconsin Breast Cancer. The results obtained show the effectiveness of the Incremental and the Modular methods which are as good as that of
the NP-Complete Batch method but with a much lower complexity level. The results obtained with the RDP are comparable to those obtained
with the backpropagation and the Cascade Correlation algorithms.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Recursive deterministic perceptron; Batch learning; Incremental learning; Modular learning; Performance sensitivity analysis; Convergence time;
Generalisation; Topology
1. Introduction

The single layer perceptron topology (SLPT), introduced by
Rosenblatt (1962), was one of the first neural network models
shown to be able to learn how to classify patterns. However,
Minsky and Papert (1969) showed that this topology is only
capable of learning linearly separable patterns. This is a big
limitation since most classification problems are non-linearly
separable (NLS). The Recursive Deterministic Perceptron feed-
forward neural network (Elizondo, 1997; Tajine & Elizondo,
1997) is a multilayer generalisation of this topology, which
provides a solution to any two-class classification problem
∗ Corresponding author.
E-mail addresses: elizondo@dmu.ac.uk (D.A. Elizondo), rab@dmu.ac.uk

(R. Birkenhead), mgongora@dmu.ac.uk (M. Góngora),
Eric.Taillard@heig-vd.ch (E. Taillard), pluyima@dmu.ac.uk (P. Luyima).

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.07.009
(even if the two classes are NLS). The RDP neural network
is guaranteed to converge, does not need any parameters from
the user, does not suffer from catastrophic interference, and
provides transparent extraction of knowledge as a set of rules
(Elizondo & Gongora, 2005). These rules can be generated,
using a computational geometry approach, as a finite union of
open polyhedral sets. Although this study will focus on two-
class classification problems, an m class (m > 2) generalisation
of the RDP exists (Tajine, Elizondo, Fiesler, & Korczak, 1997).

The approach taken by the RDP is to augment the affine
dimension of the input vectors, by adding to these vectors
the outputs of a sequence of intermediate neurons as new
components. Each intermediate neuron (IN) is an SLPT that can
linearly separate an LS subset of points from all the rest of the
points in an NLS problem. This allows for additional degrees
of freedom for transforming the original NLS problem into a

http://www.elsevier.com/locate/neunet
mailto:elizondo@dmu.ac.uk
mailto:rab@dmu.ac.uk
mailto:mgongora@dmu.ac.uk
mailto:Eric.Taillard@heig-vd.ch
mailto:pluyima@dmu.ac.uk
http://dx.doi.org/10.1016/j.neunet.2007.07.009

1096 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
linearly separable (LS) one (two subsets X and Y of Rd are
said to be linearly separable if there exists a hyperplane such
that the elements of X and Y lie on the two opposite sides of
Rd delimited by this hyperplane). These intermediate neurons
are added progressively, one at each time step. The algorithm
stops when the two classes become LS.

Three methods exist for constructing an RDP neural
network. These methods are Batch, Incremental, and Modular
learning, and were introduced by one of the authors in Tajine
and Elizondo (1998). They produce a multilayer topology
which, contrary to the SLPT, is capable of solving any
classification problem even if the classes considered are NLS.
The Batch method chooses at each step, a linearly separable
subset of maximum cardinality and produces small topologies.
This has been proven to be NP-complete in Elizondo (1997)
when the cardinality of both classes and the dimension d
are arbitrary. This result was obtained by using the NP-
completeness of the Open Hemisphere problem (Johnson &
Preparata, 1978). The Batch method has been extensively tested
and it has been shown to produce results comparable with
those obtained with other neural network methods such as
Back Propagation, Cascade Correlation, Rulex, and Ruleneg
(Elizondo, 1997). However, no testing has been done on the
Incremental and Modular methods which offer polynomial
time complexity with slightly larger topologies. A proof
of the complexity bound is given in Elizondo (1997). In
this paper, for the first time, a comparison study on the
performance of the three methods is presented. This study
highlights the main advantages and disadvantages of each of
the methods in terms of the level of generalisation obtained
by using the three methods to build RDP neural networks for
three machine learning benchmark classification problems. The
results obtained in this research show the potential for using
the Incremental and Modular methods for building RDP neural
networks and thus help to popularise the use of RDP neural
networks for solving classification problems.

For completeness, results obtained on the same datasets
used for constructing backpropagation and Cascade Correlation
neural networks are also presented.

To illustrate the principle for building an RDP neural
network the NLS 2-input Exclusive-OR (XOR) problem can
be used. For this illustration, the Batch learning method will
be used. This problem consists of classifying the two classes
X = {(0, 0), (1, 1)} and Y = {(0, 1), (1, 0)}, which are NLS.
To perform the NLS to LS transformation, a subset of patterns
of the same class which is LS from the rest of the patterns
is selected. Fig. 2 shows the four possible subsets which are
linearly separable from the rest of the dataset that can be used
to build the RDP. Any one of these LS subsets could be equally
used. We have decided to use the subset {(0, 0)} ⊂ X ∪ Y since
{(0, 0)} and {(0, 1), (1, 0), (1, 1)} are LS (by the hyperplane
Pt = {(x1, x2) ∈ R2

| 2 ∗ x1 + 2 ∗ x2 − 1 = 0}) as
illustrated in Fig. 2(d). Thus, the intermediate neuron IN1
corresponding to the SLPT of weight vector Ew = (2, 2) and
threshold t = −1 “associated” with the hyperplane Pt is
created. The output of IN1 allows us to add, to the input vectors,
one column by assigning the value −1 to the input pattern
Fig. 1. RDP neural network for solving the XOR classification problem (the
intermediate layer contains only one component, IN1, and IN2 corresponds to
the output neuron of the RDP).

{(0, 0)}, and the value 1 to the remaining three input patterns
{(0, 1), (1, 0), (1, 1)}. So, this SLPT produces the following
sets of augmented input vectors: X ′

= {(0, 0, −1), (1, 1, 1)}

and Y ′
= {(0, 1, 1), (1, 0, 1)}. Now, X ′ and Y ′ are LS by

the hyperplane P2 = {(x1, x2, x3) ∈ R3
| −2 ∗ x1 − 2 ∗

x2 + 4 ∗ x3 − 1 = 0}. Next, a second intermediate neuron
IN2 (output neuron) which corresponds to the SLPT with the
weight vector Ew = (−2, −2, 4), and threshold t = −1,
associated with the hyperplane P2, is created (Fig. 3). The
final result is a two layer RDP neural network solving the
XOR classification problem since the output value of this neural
network is −1 for the vector patterns {(0, 0), (1, 1)}, and 1 for
the remaining vector patterns {(0, 1), (1, 0)}. Fig. 1 shows a
graphical representation of the final RDP neural network which
solves the XOR classification problem. Its formal description
is [((2, 2), −1), ((−2, −2, 4), −1)]. See next section for the
formal definition.

Contrary to other learning methods such as backpropagation,
the construction of an RDP neural network, with a 100%
correct decision boundary on all training datasets, is always
guaranteed. The formal mathematical proof for the guarantee
of convergence of the RDP can found in Elizondo (1997). For
any given classification problem, there are an infinite number of
RDP neural networks which provide a solution (all with a 100%
correct decision boundary on all training datasets). The choice
of a particular RDP will affect the level of generalisation.

The RDP is a linear method that combines, in a cascade
fashion, a series of linear single layer perceptrons to build
a neural network. Other linear learning methods on LS and
NLS data include Support Vector Machines (SVM) (Atiya,
2005; Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995;
Cristianini & Shawe-Taylor, 2003). They are trained by finding
a hyperplane that separates the dataset by solving a constrained
quadratic programming optimisation problem. In the case of
NLS data, the data is mapped into some other Euclidean space.
Thus, SVM is still doing a linear separation but in a different
space. The user must find a kernel function to be used on an
SVM and this can be difficult. In its simplest form a kernel
function calculates the dot product of two training vectors. This
helps in the evaluation of the correct classification of each
training vector. One of the advantages that the RDP has over

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1097
Fig. 2. XOR classification problem and all four possible subsets of the same class which are linearly separable from the rest.
Fig. 3. Hyperplane P2 = {(x1, x2, x3) ∈ R3
| −2∗x1 −2∗x2 +4∗x3 −1 = 0}

used by the RDP to solve the XOR classification problem.

the SVM, is that its construction is done automatically without
the need for any user definable parameters.

This paper is divided into seven sections. The notion of
linear separability as well as some of the methods for testing
it, are given in Section 2. In this section also, some of the
notions used throughout this paper are introduced. Section 3
introduces the three methods for building RDP neural networks.
In Section 4, the procedure used to compare the three learning
methods is presented. Three machine learning benchmarks
(Iris, Soybean, and Wisconsin Breast Cancer) were used
(Blake, Newman, Hettich, & Merz, 1998) and datasets were
generated using cross validation. The three learning methods
are compared in terms of their level of generalisation, the size
of their topology, and their convergence time. For completeness
purposes, results using the backpropagation and the Cascade
Correlation algorithms are also presented. Section 5 presents
some results and discussion. A summary and some conclusions
are presented in Section 6. In the last section, some future
research ideas are proposed.

2. Linear separability

Two subsets X and Y of Rd are said to be linearly separable
(LS) if there exists a hyperplane P of Rd such that the elements
of X and those of Y lie on opposite sides of it. Fig. 4 shows an
example of both an LS (a) and an NLS (b) set of points. Squares
and circles denote the two classes.

The Recursive Deterministic Perceptron can always distin-
guish, in a deterministic way, two or more classes (even if the
two classes are not linearly separable). The idea behind the con-
struction of an RDP is to augment the affine dimension of the
input vector by adding to these vectors the outputs of a sequence
of intermediate neurons as new components. Each intermediate
neuron corresponds to a single layer perceptron and it is charac-
terised by a hyperplane which linearly separates an LS subset,
taken from the non-LS (NLS) original set, and the remaining
points in the dataset.

2.1. Background

In this section, some of the standard notions used throughout
this paper are introduced, together with some definitions and
properties.

1098 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Fig. 4. LS (a) and a non-LS (b) set of points.

2.1.1. Preliminaries
The following standard notions are used: Let E, F ⊂ Rd ,

• Card(E) stands for the cardinality of a set E . E \ F is the set
of elements which belong to E and does not belong to F .

• E ⊕ F is the set of elements of the form Ee + Ef with Ee ∈ E
and Ef ∈ F .

• E 	 F stands for E ⊕ −(F), i.e. the set of elements of the
form Ee − Ef with Ee ∈ E and Ef ∈ F .

• Im(E, G) = {(x1, . . . , xd , xd+1) ∈ G | (x1, . . . , xd) ∈ E}.

Let Ep1, Ep2 be the standard position vectors representing two
points P1 and P2 in Rd ,

• The set {t Ep1 + (1 − t) Ep2 | 0 ≤ t ≤ 1} is called the segment
between Ep1, Ep2 and is denoted by [Ep1, Ep2].

• The dot product of two vectors Eu = (u1, . . . , ud), Ev =

(v1, . . . , vd) is defined as EuEvT
= u1v1 + · · · + udvd .

Adj(Eu, r) = (u1, . . . , ud , r) and by extension Adj(S, r) =

{Adj(Ex, r) | Ex ∈ S}.
• P(Ew, t) stands for the hyperplane {Ex ∈ Rd

| EwExT
+t = 0} of

Rd . Ew is the normal (i.e. is perpendicular), to the hyperplane
P. The threshold t is proportional to the distance from the
origin to P. P will stand for the set of all hyperplanes of Rd .

The fact that two subsets X and Y of Rd are linearly
separable is denoted by X ‖ Y or X ‖ Y (P) or X ‖P Y .
Thus if X ‖ Y (P(Ew, t)), then (∀Ex ∈ X, EwExT

+ t > 0 and
∀Ey ∈ Y, EwEyT
+ t < 0) or (∀Ex ∈ X, EwExT

+ t < 0 and
∀Ey ∈ Y, EwEyT

+ t > 0).
Let X, Y ⊂ Rd , P(X, Y) = {P ∈ P | X ‖ Y (P)}.

Definition 1. A Recursive Deterministic Perceptron (RDP) P
on Rd is a sequence [(Ew0, t0), . . . , (Ewn, tn)] such that Ewi ∈

Rd+i and ti ∈ R, for 0 ≤ i ≤ n.
•(Ewi , ti) for 0 ≤ i ≤ n, is called an Intermediate Neuron

(IN) of the RDP P (i.e. an IN of RDP corresponds to an SLPT).

2.2. Methods for testing linear separability

The methods for testing linear separability between two
classes can be divided into five groups:

• The methods based on solving systems of linear equations.
These methods include: the Fourier–Kuhn elimination
algorithm, and the Simplex algorithm. The original
classification problem is represented as a set of constrained
linear equations. If the two classes are LS, the two
algorithms provide a solution to these equations.

• The methods based on computational geometry techniques.
The principal methods include the convex hull algorithm
and the class of linear separability method. If two classes
are LS, the intersection of the convex hulls of the set of
points that represent the two classes is empty. The class
of linear separability method consists in characterising the
set of points P of Rd by which it passes a hyperplane that
linearly separates two sets of points X and Y .

• The methods based on neural networks. The method
originally used in the development of the RDP was the
perceptron learning algorithm. If the two classes are LS,
the perceptron algorithm is guaranteed to converge, after
a finite number of steps, and will find a hyperplane that
separates them. If the sets are not separable this method will
not converge.

• The methods based on quadratic programming. These
methods can find a hyperplane that linearly separates two
classes by solving a quadratic optimisation problem. This is
the case for the SVM.

• The Fisher linear discriminant method. This method tries
to find a linear combination of input variables, w × x ,
which maximises the average separation of the projections
of the points belonging to the two classes C1 and C2 while
minimising the within class variance of the projections of
those points. The resulting hyperplane does not necessarily
separates the classes.

These methods are described in detail in Elizondo (2006).
Several heuristic methods, to reduce the calculation time
while testing for linear separability, are presented in Elizondo
(2004a). The original work on the RDP relied on the Perceptron
algorithm to find separating hyperplanes, but this method is
not guaranteed to produce a result in bounded time. A faster
more efficient algorithm for testing linear separability uses
the Simplex method. Therefore, this is the selected method
for testing linear separability used for this work. The Simplex
algorithm has the additional power to confirm that no separating

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1099
plane exists if that is the case. From the perspective of the
RDP, all that is relevant is knowledge of a particular separating
hyperplane.

The problem of finding a hyperplane P(Ew, t) which
separates sets X and Y in Rd [i.e. finding Ew, t where EwExT

+t >

0 and EwEyT
+ t < 0 for all Ex ∈ X, Ey ∈ Y] is equivalent to

finding Ew1 ∈ Rd+1 for which (Ew1EsT > 0 ∀Es ∈ S) where S =

Adj(X, −1) ∪ −Adj(Y, −1). [Given Ew1 which solves the “S
problem” in Rd+1, the separability hyperplane in Rd is P(Ew, t)
where Ew1 = Adj(Ew, −t). It can be seen that EwExT

+ t > 0 and
− EwEyT

− t > 0 ⇒ EwEyT
+ t < 0.]

The presented separation algorithm is implemented in Rd+1

solving the problem of S. The solution to the original problem
for X and Y is then obtained. Since S is finite, the problem of
finding Ew1 with Ew1EsT > 0 ∀Es ∈ S is equivalent to the problem
of finding Ew2 with Ew2EsT

≥ 1 ∀Es ∈ S.
This is a linear programming problem which can be solved

by the Simplex method. The set S maps to a set of linear
constrains and the calculation of Ew2 reduces to showing
that the constraints can all be satisfied simultaneously and
choosing one solution. Furthermore, if the constraints cannot
be solved simultaneously, then there is no Ew2 and no separating
hyperplane to solve the original problem.

The Simplex method is one of the most popular methods
used for solving linear programs. A linear program can be seen
as a set of variables which are contained in a linear expression
called the objective function. The goal is to find values to these
variables which maximise or minimise the objective function
subject to constraints. These constraints linear expressions must
be either ≤, ≥, or = to a given value. There are three possible
results when trying to solve a linear program.

1. The model is solvable. This means that there exists a set of
values for the variables that provide an optimal value to the
objective function.

2. The model is infeasible. This means that there are no values
for the variables which can satisfy all the constraints at the
same time.

3. The model is unbounded. This means that the value of
the objective function can be increased with no limit by
choosing values to the variables.

We use in this work the Simplex algorithm for testing linear
separability among two classes. The algorithms in Tables 1
and 2 show the Simplex procedure. This algorithm consists in
finding the values of q and p to pivot and repeating the process
until either an optimum value is obtained, or the linear program
is determined to be infeasible. This method can be viewed
as a method for organising the procedure so that: a series of
combinations of the equations is tried for which the objective
function increases (maximisation of the objective function) or
decreases (minimisation of the objective function) at each step,
and the optimal feasible vector is reached after a number of
iterations that is almost always no longer than the order of the
number of equations or the number of independent variables,
whichever is larger.

We can take, as an example to illustrate the Simplex
algorithm, the binary function AND. Let X = {(1, 1)} and
Table 1
The simplex algorithm (Source: Sedgewick (1983, chap. 38))

SIMPLEX(A)
– data: an arrayA of size MxN containing the
constraints linear expressions the pivot column and row
represented by p and q respectively.
– result: a solution if the constraints linear expressions
are solvable, otherwise an unbounded or
infeasible response.
Repeat

q := 0;

Repeat
q := q + 1

Until (q = M + 1) Or (a[0, q] < 0);
p := 0;

Repeat
p := p + 1

Until (p = N + 1) Or (a[p, q] > 0);
For i := p + 1 To N Do

If a[i, q] > 0
Then

If ((a[i, M + 1]/a[i, q]) < (a[p, M + 1]/a[p, q]))

Then
p := i;

If (q < M + 1) And (p < N + 1)

Then
pivot (p, q)

Until(q = M + 1) Or (p = N + 1)

Table 2
The pivot procedure for the simplex algorithm (Source: Sedgewick (1983, chap.
38))

procedure pivot(p,q)
– data: the row p and column q of the MxN array
containing the constraints linear expressions on which to
perform the pivoting
– result: a q column containing all values equal to zero
except for a 1 in row q .
This is obtained by adding multiples of row p to each row
as necessary.

Begin
For j := 0 To N Do

For k := M + 1Downto 1 Do
If (j <> p) And (k <> q)

Then
a[j, k] := a[j, k] − a[p, k] ∗ a[j, q]/a[p, q];

For j := 0 To N Do
If j <> p
Then

a[j, q] := 0;

For k := 0 To M + 1 Do
If k <> q
Then

a[p, k] := a[p, k]/a[p, q];

a[p, q] = 1;

End

Y = {(0, 0), (1, 0), (0, 1)} represent the input patterns for the
two classes, X and Y , which define the AND problem. We
want to find a weight vector Ew and a threshold t such that
X ‖ Y (P(Ew, t)). We note, from above, X̃ = {(1, 1, −1)}, Ỹ =

{(0, 0, −1), (1, 0, −1), (0, 1, −1)}, and S = {x0, x1, x2, x3} =

{(1, 1, −1), (0, 0, 1), (−1, 0, 1), (0, −1, 1)}.

1100 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Thus, to find out if X ‖ Y , we need to find a set of
values for the weights w1, w2, and threshold t such that they
simultaneously solve all of the given inequalities.

w1 + w2 + t ≥ 1,

−t ≥ 1,

−w1 − t ≥ 1.

−w2 − t ≥ 1.

Since the Simplex method limits the values of the variables
to being ≥0, and a weight value can either be positive or
negative, we transform each of our original variables as the
difference of two variables. This transformation produces the
following variables.w1 = w11 aux − w12 aux ,

w2 = w21 aux − w22 aux ,

t = t1 aux − t2 aux .

Using the above transformations, our new set of constraints
becomes:

(w11 aux − w12 aux) + (w21 aux − w22 aux)

+(t1 aux − t2 aux) ≥ 1,

(−t1 aux + t2 aux) ≥ 1,

(−w11 aux + w12 aux) − (t1 aux + t2 aux) ≥ 1,

(−w21 aux + w22 aux) − (t1 aux + t2 aux) ≥ 1.

By applying the simplex method, we obtain a feasible solution
which gives the following result.

w11 aux = 2, w12 aux = 0,

w21 aux = 2, w22 aux = 0,

t1 aux = 0, t2 aux = 3.

We can thus conclude that the problem is LS. By using
these intermediate values we obtain the following values for
our original set of variables: w1 = 2, w2 = 2, and t = −3.
These variables form the actual hyperplane which separates the
two classes.

3. Methods for building RDP neural networks

The three methods for building RDP neural networks are
Batch, Incremental and Modular. The Batch method follows a
selection strategy based on searching homogeneous LS subsets
(i.e., whose elements belong to the same class) from a set of
NLS points. With the Incremental approach, all the previous
knowledge learned before when adding new knowledge to the
RDP does not have to be rediscovered. The modular approach
allows the combination of several RDP models, within a single
RDP, without having to do any further training.

3.1. The batch method

3.1.1. Description of the method
The Batch method (Table 3) uses an LS subset selection

strategy which consists of selecting a set of LS points which
belongs to the same class and have maximum cardinality.
Essentially, this selection method must utilise some form of
Table 3
Batch learning algorithm

Batch (X, Y)
Batch(X, Y)
–data: two disjoint finite subsets X, Y of Rd ,
–result: An RDP P = [(Ew0, t0), . . . , (Ewn−1, tn−1)]

which transforms X and Y into two LS classes. (An RDP linearly
separating X, Y , by adding one IN to the RDP constructed by this
algorithm is obtained.
This IN corresponds to the output neuron.)
i := 0; X0 := X; Y0 := Y ; X ′

0 := X; Y ′
0 := Y ; S0 = X ∪ Y ;

WHILE not (Xi ‖ Yi) do
BEGIN

SELECT: Select any maximal non-empty subset Zi from X ′
i or from Y ′

i
such that Zi ‖ (Si \ Zi)(P(Ewi , ti));
(i.e., (Zi ⊂ X ′

i or Zi ⊂ Y ′
i) and Zi ‖ (Si \ Zi)(P(Ewi , ti))

CASE: Zi ⊂ X ′
i

Si+1 := Adj(Zi , −1) ∪ Adj(Si \ Zi , 1);
X ′

i+1 := Im(X ′
i , Si+1) \ Im(Zi , Si+1);

Y ′
i+1 := Im(Y ′

i , Si+1);

Xi+1 := Im(Xi , Si+1);

Yi+1 := Si+1 \ Xi+1;

i := i + 1;
CASE: Zi ⊂ Y ′

i
Si+1 := Adj(Zi , 1) ∪ Adj(Si \ Zi , −1);
Y ′

i+1 := Im(Y ′
i , Si+1) \ Im(Zi , Si+1);

X ′
i+1 := Im(X ′

i , Si+1);

Xi+1 := Im(Xi , Si+1);

Yi+1 := Si+1 \ Xi+1;

i := i + 1;
END;

exhaustive search explaining the poor complexity measure of
the algorithm. This deficiency does not apply to the incremental
method discussed later in this section. This set of points is
used to compute a hyperplane that separates them from the
rest of the points in the dataset. Using this hyperplane, a new
intermediate neuron is created and added to the topology. This
increases the dimension of the input vector by one. To guarantee
convergence, this LS set is marked as used. The process starts
again with the remaining set of points until either all points
are used, or the problem becomes linearly separable. This
algorithm stops after at most n − 1 steps, where n corresponds
to the number of learning patterns.

3.1.2. Example
In this subsection, the use of the Batch learning method,

presented in Table 3, is illustrated by applying it to an NLS 2D
classification toy example. The NLS 2D classification problem
consists of two classes A (+), B (�) (see Fig. 5).

A = {(3, 2), (4, 2), (2, 3), (3, 3), (4, 3), (2, 4), (3, 4), (4, 4),

(2, 5), (3, 5), (4, 5), (2, 6), (3, 6), (4, 6), (2, 7), (3, 7),

(4, 7), (5, 7), (6, 7), (7, 7), (4, 8), (5, 8), (6, 8)},

B = {(3, 0), (4, 0), (5, 0), (6, 0), (3, 1), (4, 1), (5, 1), (6, 1),

(6, 2), (1, 3), (5, 3), (6, 3), (5, 4), (6, 4), (5, 5),

(6, 5), (7, 5), (8, 5), (5, 6), (6, 6), (7, 6), (8, 6), (8, 7),

(9, 7), (2, 8), (7, 8), (8, 8), (5, 9), (6, 9), (7, 9), (8, 9)}.

After applying the Batch learning method in Table 3 to
this problem, an RDP containing seven INS which linearly

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1101
Fig. 5. 2D plot of the two-class classification problem used to illustrate the
Batch learning algorithm (+ = class A, � = class B).

Table 4
LS subsets selected by executing the Batch learning algorithm described in
Table 3 applied to the 2D two-class classification problem

Step # Selected subset Class

1 {(3, 0), (4, 0), (5, 0), (6, 0), (4, 1), (5, 1), (6, 1), B
(5, 3), (6, 3), (6, 4), (6, 5), (7, 5), (8, 5),
(7, 6), (8, 6), (9, 7), (8, 7), (8, 8)}

2 {(7, 8, 1), (5, 9, 1), (6, 9, 1), (7, 9, 1), (8, 9, 1)} B
3 {(5, 7, 1, 1), (6, 7, 1, 1), (7, 7, 1, 1), (4, 8, 1, 1)} B

{(5, 8, 1, 1), (6, 8, 1, 1) }

4 {(5, 4, 1, 1, −1), (5, 5, 1, 1, −1), (5, 6, 1, 1, −1), A
(6, 6, 1, 1, −1) }

5 {(3, 2, 1, 1, −1, 1), (4, 2, 1, 1, −1, 1), (3, 3, 1, 1, −1, 1), A
(4, 3, 1, 1, −1, 1), (3, 4, 1, 1, −1, 1), (4, 4, 1, 1, −1, 1),
(3, 5, 1, 1, −1, 1), (4, 5, 1, 1, −1, 1), (3, 6, 1, 1, −1, 1),
(4, 6, 1, 1, −1, 1), (3, 7, 1, 1, −1, 1), (4, 7, 1, 1, −1, 1)}

6 {(3, 1, 1, 1, −1, 1, −1), (1, 3, 1, 1, −1, 1, −1)} B

separates A and B is obtained. Table 4 shows the LS subsets
selected for each IN (at each step, the selected LS subset was
of maximal cardinality). Table 5 shows the weight vectors and
thresholds found for each IN. A projection of the selected LS
subsets used in the different steps for building the RDP is shown
in Fig. 6. Each set shown is a maximal separable set at some
stages in the algorithm. Fig. 7 shows the RDP topology found
by the learning algorithm described in Table 3 for solving this
problem.

3.2. The incremental method

3.2.1. Description of method
In the Incremental or progressive learning, an RDP network

is originally trained using only a subset of the training dataset
to be correctly classified. The method always guarantees the
existence of a subset which can be correctly classified because
at least one data vertex in the convex hull of the data will work.
The algorithm chooses such a set by inspecting each vertex
for suitability and using a suitable vertex which produces the
Table 5
RDP weight vectors and threshold values obtained by executing the Batch
learning algorithm (Table 3) for each of the INs

i (Step) Ewi (Weight vector) ti , (Threshold)

1 (−10, 6) 29
2 (−2, −4, −2) 47
3 (2, 4, 6, 8) −51
4 (−2, 0, −5, −4, 3) 21
5 (14, 2, 48, 43, −34, 26) −196
6 (2, 2, −9, 0, 0, 0, 0) 0
7 (0.3, 2, −7.85, 0.75, −1.6, −3.55, −0.3) −6.85

Fig. 6. Projection in a plane of the LS subsets selected by the Batch learning
algorithm described in Table 3 to create the INs necessary to construct the RDP.
At this point the problem has become separable.

Fig. 7. The topology of the RDP for solving the 2D classification problem
obtained by applying the Batch learning algorithm described in Table 3 (IN7
corresponds to the output neuron).

training set with maximum cardinality. Once this network is
trained to properly classify this subset, training is continued
with the remaining points. Each new point is passed through
the existing network. If a new point is not well-classified by
the existing RDP, then the new knowledge is captured, without
disturbing the previously acquired knowledge, by adding a new
intermediate neuron. Training goes on until all the remaining
points are classified correctly.

3.2.2. Example
The Incremental learning method is illustrated by applying

it to the same problem used to illustrate the Batch learning

1102 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Fig. 8. Cluster subsets A1 and B1 used to build the first RDP and individual
points added, one at the time, p1, . . . , p9 used to illustrate the Incremental
learning method.

method (see Fig. 5). In this hand calculation we simply choose
appropriate starting subsets by eye. In the actual execution the
sets are found by processing each individual point and taking
the set which is maximal in the subsequent classification. The
choice of this set may affect the classification boundary line for
previously unseen data. First a data subset is selected

A1 = {(3, 2), (2, 3), (3, 3), (2, 4), (3, 4), (4, 4), (2, 5),

(3, 5), (4, 5), (2, 6), (3, 6), (4, 6), (2, 7), (3, 7),

(4.7), (5, 7), (6, 7), (4, 8), (5, 8), (6, 8)}

from set A and

B1 = {(3, 0), (4, 0), (5, 0), (6, 0), (3, 1), (4, 1), (5, 1),

(6, 1), (6, 2), (5.3), (6, 3), (5, 4), (6, 4),

(5, 5), (6, 5), (7, 5), (8, 5), (6, 6), (7, 6), (8, 6),

(8, 7), (9, 7), (7, 8), (8, 8), (8, 9)}

from B which are linearly separable by the hyper-
plane P((−42, 24), −85). Therefore, A1 ‖p B1 where P =

[((−42, 24), −85)]. A = A1
⋃

{p1, p2, p3} where p1, p2 and
p3 correspond respectively to (4, 2), (4, 3), and (7, 7) and B =

B1
⋃

{p4, p5, p6, p7, p8, p9} where p4, p5, p6, p7, p8, and p9
correspond respectively to (1, 3), (5, 6), (2, 8), (5.9), (6, 9),
and (7, 9) (Fig. 8). Next, the remaining points p1, . . . , p9 are
“learned” and the RDP containing ten INS shown in Table 6
which separates A and B is obtained.

3.3. The modular method

3.3.1. Description of method
The idea behind modular neural networks is to divide the

original problem into smaller subproblems, each of which is
to be solved by a subnetwork. These subnetworks are then
assembled together into a global network which solves the
original problem. The rationale for division into subproblems
could be determined by domain knowledge or even be random;
Table 6
RDP weight vectors and threshold values obtained by the Incremental learning
algorithm for each of the INs

i (Step) Ewi (Weight vector) ti (Threshold)

1 (−41.9994, 24) 119.997
2 (−83.994, 48, −35.0012) 226.972
3 (−167.988.96, −70.0024, −21.9913) 455.899
4 (335.97, −192, 140.005, 43.98

26, 23.947) 32.095
5 (671.94, −384, 280.01, 87.96 52,

47.894, −919.96) −551.61
6 (1343.88, −768, 560.02, 175.93,

95.788, −1839.92, −304.161) 480.416
7 (2687.76, −1536, 1120.04, 351.86,

191.576, −3679.84, −608.322,
−1887.79) −94.549

8 (5375.52, −3072, 2240.08, 103.12,
383.152, −7359.68,
−1216.54, −3775.58, −832.398) 1154.148

9 (10751, −6144.4480.16, 1407.44,
766.304, −14719.4,
−2433.28, −7551.16, −1664.8,
−2175.64) 1927.436

10 (−21502, 12288, −8960.32,
−2814.88, −1532.61,
29438.8.4866.56, 15102.3, 3329.6,
4351.28, 1796.44) −2062.32

the modular RDP combines the RDP subnetworks without loss
of previously learned information and with no need for further
training. In Section 2, the notation X ‖ Y (P) to indicate that
the plane P separated linearly the sets X and Y was introduced.
In cases where X and Y are not linearly separable, it was shown
in Section 3 that an RDP can be constructed which effectively
separates the sets X and Y . The above notation can easily be
extended to X ‖ Y (R) to indicate that the RDP R effectively
separates X and Y . The following theorem shows how to join
the RDP subnetworks.

The RDP networks can clearly be composed so that the
output from a set of networks can be passed as the input to
another. Since an RDP network essentially just computes a
function we use the standard function composition symbol ◦

to signify network composition. Hence Q ◦ [P1, P2] would
indicate that Q is a two input RDP composed with RDP
networks P1 and P2 both of which classify data of the same
dimension.

Theorem 1. Let A1, A2, B1, B2 be finite subsets of Rd . Let
P1, P2, P3, P4 be RDPs on Rd such that A1 ‖P1

B1, A1 ‖P2
B2,

A2 ‖P3
B1, A2 ‖P4

B2
Let Q, a 4D RDP be defined as

Q = [((1, −1, 1, −1), 3), ((3, 5, 2, 5, 5), −3)].

Then for the network P = Q ◦ [P1, P3, P2, P4], we have
(A1

⋃
A2) ‖P (B1

⋃
B2).

The complete proof of the this theorem is given in Tajine and
Elizondo (1998). Each RDP P1, P2, P3, and P4 will produce the
outputs described in Table 7 for each of the data subsets:

Let:

S1 = {(1, −1, 1, −1), (1, −1, 1, 1), (1, 1, 1, −1),

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1103
Table 7
Outputs produced by the RDPs P1, P2, P3, and P4

A1 A2 B1 B2

[p]

P1 1 ±1 −1 ±1
P2 ±1 1 ±1 −1
P3 1 ±1 ±1 −1
P4 ±1 1 −1 ±1

(1, 1, 1, 1), (−1, 1, −1, 1), (−1, 1, 1, 1), (1, 1, −1, 1)}

and

S2 = {(−1, −1, −1, −1), (−1, −1, 1, −1), (−1, 1, −1, −1),

(−1, 1, 1, −1), (−1, −1, −1, 1), (1, −1, −1, −1),

(1, −1, −1, 1)}.

Then S1
⋂

S2 = 0,

Let Q = [((1, −1, 1, −1), 3), ((3, 5, 2, 5, 5), −3)], then
S1 ‖Q S2. Therefore, if P = Q ◦ [P1, P2, P3, P4], then

(A1 ∪ A2) ‖P (B1 ∪ B2).

3.3.2. Example
To illustrate the modular construction of an RDP, the

same classification problem used to illustrate the Batch
and Incremental methods is used. The two original classes
are decomposed into the following arbitrarily user selected
subclasses:

A1 = {(3, 2), (4, 2), (2, 3), (3, 3), (4, 3), (2, 4), (3, 4), (4, 4),

(2, 5), (3, 5), (4, 5), (2, 6), (3, 6), (4, 6), (2, 7), (3, 7)},

A2 = {(4, 7), (5, 7), (6, 7), (7, 7), (4, S), (5, 8), (6, 8)},

B1 = {(3, 0), (4, 0), (5, 0), (6, 0), (3, 1), (4, 1), (5, 1), (6, 1),

(5, 2), (6, 2), (1, 3), (5, 3), (6, 3), (5, 4), (6, 4), (5, 5),

(6, 5), (7, 5), (8, 5), (5, 6), (6, 6), (7, 6), (8, 6), (8, 7),

(9, 7)},

B2 = {(2, 8), (7, 8), (8, 8), (5, 9), (6, 9), (7, 9), (8, 9)},

as shown in Fig. 9 (A = A1
⋃

A2 and B = B1
⋃

B2).
Next an RDP to linearly separate each subclass from the other
subclasses, as shown below, is created:

A1 ‖P1
B1, A1 ‖P2

B2, A2 ‖P3
B1, A2 ‖P4

B2

where P1 = [((−7, −9), −38), ((27, −5, 62), 40)], P2 =

[((0, 10), 76)], P3 = [((85, −172), −608)], and P4 =

[((−16, 7), −1), ((23, 28, 219), 145)]. The RDP neural net-
works can then be created by either using the Batch or the In-
cremental or a combination of both approaches. In this paper,
results are provided with the Modular Batch and the Modular
Incremental methods. Once the four RDP modules are created,
they can be unified into a single RDP network by using the
RDP computed above to linearly separate S1 and S2. The fi-
nal topology of the RDP that combines the four modules for
linearly separating classes A and B is shown in Fig. 10. The
RDPs P1, P2, P3, P4 can be constructed in a parallel fashion
since their constructions are independent from each other.
Fig. 9. Clusters of the data subsets A1, A2, B1, and B2 used to illustrate the
modular learning algorithm for constructing RDP neural networks.

Fig. 10. RDP topology for solving the 2D classification problem obtained by
applying the modular learning algorithm.

Table 8
Inputs and outputs used on the IRIS classification problem

Attributes (in cm) Output Output classes

Sepal length Iris plant type Iris Setosa
Sepal width Iris Versicolour
Petal length Iris Virginica
Petal width

4. Comparison procedure

The three machine learning benchmark datasets used in the
comparison study were identified in Section 1.

The IRIS dataset classifies a plant as being an Iris Setosa,
Iris Versicolour or Iris Virginica. The dataset describes every
iris plant using four input parameters (Table 8). The dataset
contains a total of 150 samples with 50 samples for each of
the three classes. All the samples of the Iris Setosa class are

1104 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Table 9
Inputs and outputs used in the SOYBEAN classification problem

Attributes Output Output classes

Date Leaf-shred Disease type Brown-spot
Plant-stand Stem Alternaria-leaf-spot
Precipitation Stem-cankers Frog-eye-leaf-spot
Temperature Canker-lesion
Hail Fruiting-bodies
Crop-hist External decay
Area-damaged Fruit-pods
Severity Fruit spots
Seed-tmt Seed
Germination Plant-growth

Table 10
Inputs and outputs used on the Wisconsin Breast Cancer classification problem

Attributes (1–10) Output Output classes

Clump thickness Class Benign
Uniformity of cell size Malignant
Uniformity of cell shape
Marginal adhesion
Single epithelial cell size
Bare nuclei
Bland chromatin
Normal nucleoli
Mitoses

linearly separable from the rest of the samples (Iris Versicolour
and Iris Virginica). Therefore, only the samples belonging to
the Iris Versicolour and the Iris Virginica classes were used in
this study. Some of the publications that used this benchmark
include: Dasarathy (1980), Elizondo (1997), Fisher (1936),
Gates (1972).

The SOYBEAN classification problem contains data for the
disease diagnosis of the Soybean crop. The dataset describes
the different diseases using symptoms. The original dataset
contains 19 diseases and 35 attributes. The attribute list was
limited to those attributes that had non-trivial values in them
(Table 9). Thus there were only 20 out of the 35 attributes that
were included in the tests. Since for simplification purposes,
this paper uses the two-class RDP as opposed to the m class
one, only two classes were selected based on the number of
samples available and used to build the network. The brown
spot, alternaria-leaf-spot and frog-eye-leaf-spot, each having 40
samples were selected and were used. The networks developed
were trained to separate the disease class alternaria-leaf-spot
from the other two diseases, brown spot and frog-eye-leaf-spot.

The Wisconsin Breast Cancer dataset (Bennett & Mangasar-
ian, 1992; Mangasarian & Wolberg, 1990; Wolberg & Man-
gasarian, 1990) consists of a binary classification problem to
distinguish between benign and malignant breast cancer. The
dataset contains 699 instances and 9 attributes (Table 10). The
class distribution is: Benign 458 instances (65.5%), and Malig-
nant 241 instances (34.5%).

The technique of cross validation was applied to split the
benchmarks into training and testing datasets. The datasets
were randomly divided into ‘n’ equal sized testing sets that
were mutually exclusive (Weiss & Kulikowski, 1991). The
remaining samples were used to train the networks. In this
study, the classification benchmark datasets were divided
into ten equally sized datasets. Sixty percent of the samples
were used for training the networks and the remaining forty
percent were used for testing purposes. Thus, for each of the
three training algorithms, ten different neural networks were
developed and tested using different combinations of test sets
that were picked up from the equally divided sample sets.

To train the modular networks, each of the cross validation
training datasets was further divided into four subsets. The
first two subsets, each contained half of the data for class one
randomly assigned. The remaining two subsets each contained
half of the data for class two, also randomly assigned.

This study was based on the comparison between the
convergence time, the level of generalisation, and the topology
size with respect to previously unseen data, obtained with
each of the three learning algorithms for building RDP neural
networks.

Some preliminary results on the comparison of the level of
generalisation obtained with the different methods for building
RDP neural networks were presented in Elizondo, Birkenhead,
and Taillard (2006). The simplex algorithm was used on this
study for testing for linear separability. This algorithm was
remarkably faster than the Perceptron one when searching for
LS subsets. Other algorithms for testing linear separability
include the Class of Linear Separability (Elizondo, 2004b) and
the Fisher method (see Elizondo (2006) for a survey on methods
for testing linear separability).

These results provide a good basis to further develop
this study and to compare the topology size (number of
intermediate neurons), and convergence time obtained with the
three RDP methods. After describing the experimental setup,
some conclusions are presented in the next section.

5. Results and discussion

We now give a comparison of the three RDP construction
methods based on their time of convergence, their level of
generalisation on previously unseen data, and the number of
intermediate neurons needed to transform the NLS problem
into an LS one. For comparison, results are also presented for
the levels of generalisation obtained using the backpropagation
and Cascade Correlation algorithms. The IRIS, SOYBEAN
and Wisconsin Breast Cancer benchmark datasets were used
for constructing neural networks using these methods. Two
modular networks were built for each benchmark. The first
modular model was trained using the Batch method. The
second modular model was trained using the Incremental
method. The technique of cross validation was applied to split
the benchmarks into training and testing datasets. Some of
the training subsets were linearly separable (marked with an
asterisk in the tables below). Thus, a single layer perceptron
network was used to train them. No incremental or modular
networks were developed using these LS subsets. It is likely
that the smaller subsets become less complex to learn than the
original sets. Therefore, as expected, several of the originally

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1105
Table 11
Results obtained with the three learning methods and the three benchmarks in terms of the convergence time

Dataset Iris Soybean Wisconsin breast cancer
Batch Incr Mod batch Mod incr Batch Incr Mod batch Mod incr Batch Incr Mod batch Mod incr

1 6.7 s 0.2 s 1.4 s 0.2 s 0.0a 0.0 sa 0.0 sa 0.1 sa 2.5 h 15.5 s 1.0 h 8.8 s
2 0.0 sa 0.0 sa 0.0 sa 0.0 sa 15.6 s 0.2 s 0.0 sa 0.1 sa 2.5 h 17.8 s 1.9 h 8.8 s
3 6.7 s 0.1 s 1.5 s 0.1 s 0.0 sa 0.0 sa 0.0a 0.1 sa 2.5 h 16.3 s 1.2 h 7.1 s
4 10.1 s 0.1 s 0.0 sa 0.0 sa 13.7 s 0.2 s 0.0 sa 0.1 sa 2.5 h 20.9 s 1.6 h 9.2 s
5 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.1 sa 2.5 h 15.9 s 1.8 h 9.0 s
6 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.1 sa 2.5 h 16.6 s 1.0 h 8.5 s
7 0.0 sa 0.0 sa 0.0 sa 0.0 sa 14.1 s 0.2 s 2.7 s 0.2 s 2.6 h 21.0 s 1.2 h 10.8 s
8 10.1 s 0.1 s 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.0 sa 0.1 sa 2.5 h 20.0 s 1.4 h 10.7 s
9 0.0 sa 0.0 sa 0.0 sa 0.0 sa 14.2 s 0.2 s 0.0 sa 0.1 sa 2.6 h 18.5 s 1.4 h 10.3 s

10 10.1 s 0.1 s 1.4 s 0.1 14.3 s 0.2 s 0.0a 0.1 sa 2.5 h 18.8 s 1.4 h 10.7 s
∆b 4.3 s 0.1 s 0.5 s 0.0 s 7.2 s 0.1 s 0.3 s 0.1 s 2.5 h 18.1 s 1.4 h 9.4 s

a Implies that the two classes on the dataset used for the training of the neural network were linearly separable datasets.
b ∆ represents the average over the datasets that were not linear separable.

Table 12
Results obtained with the three RDP learning methods, backpropagation, and cascade correlation using the Iris benchmark dataset in terms of the level of
generalisation

Dataset RDP Back propagation Cascade correlation
Batch Incr Mod batch Mod incr Mean Mode Min Max STD Mean Mode Min Max STD

1 92.5 92.5 100.0 97.5 95.95 95 95 100 1.65 96.6 95 95 100 2.16
2 95.0a 95.0a 87.5a 87.5a 85.8 85 82.5 90 2.18 68.3 67.5 67.5 70 1.25
3 97.5 97.5 95.0 97.5 97.7 100 92.5 100 3.21 98.3 97.5 97.5 100 1.25
4 92.5 90.0 87.5a 87.5a 85.65 87.5 80 87.5 2.31 85.3 85 75 95 6.05
5 95.0a 95.0a 95.0a 95.0a 95.47 95 92.5 97.5 1.26 91.4 92.5 90 92.5 1.32
6 85.0a 85.0a 90.0a 90.0a 88.87 87.5 85 92.5 1.68 90.8 87.5 87.5 95 3.06
7 95.0a 95.0a 92.5a 90.0a 90.75 90 87.5 92.5 1.48 91.4 92.5 90 92.5 1.32
8 92.5 87.5 97.5a 97.5a 91.5 92.5 90 95 1.37 89.7 87.5 85 95 3.41
9 95.0a 95.0a 92.5a 90.0a 92.67 95 90 95 2.25 91.9 92.5 90 92.5 1.10

10 92.5 92.5 97.5 100 97.6 97.5 97.5 100 0.49 98.3 97.5 97.5 100 1.25
∆b 93.25 92.5 93.5 93.25 92.2 – – – – 90.2 – – – –

a Implies that the two classes on the dataset used for the training of the neural network were linearly separable datasets.
b ∆ represents the average over the datasets that were not linear separable.
NLS training sets became LS after splitting them into smaller
subsets to use on training the modular method. This simplified
the learning procedure, but had no impact on the validity of the
results.

Table 11 shows the convergence time, obtained using the
different methods for constructing RDP neural networks. It can
be clearly seen that all alternative methods to the Batch give
a dramatic improvement in the construction of the RDP. For
the Iris dataset, the performance relative to the convergence
time, the Incremental method executes 50 times faster, Modular
Batch 10 times faster, and the Modular Incremental 30 times.
As the size of the dataset increases, the improvement of the
incremental methods becomes more apparent, as in the Soybean
dataset, the Incremental method executes 65 times faster, the
Modular Batch 22 times faster, and the Modular Incremental
60 times. Lastly, the Wisconsin dataset highlights the fact that
the NP-complete nature of the Batch learning method (please
refer to Tajine and Elizondo (1998) for a formal proof and
discussion of the complexities of the three methods) becomes
more evident as the size of the datasets increases. In this case
the Incremental method executes 506 times faster, the Modular
Batch 1.8 times faster, and the Modular Incremental 1000 times.
Clearly, as the Modular Batch still inherits the NP-complete
nature of the Batch method, this method maintains a variable
level of performance with regards to the increments on the
dataset size. The incremental method becomes drastically faster
as the number of samples grow.

Tables 12–14 show the level of generalisation, in terms
of percentage of well-classified samples, obtained using the
different methods for constructing RDP neural networks. These
results show that both the Batch and the Incremental methods
offer comparable performance. The average (∆) results on
the level of generalisation obtained on both methods, using
the three benchmarks, only differ by less than 1%. In the
case of the Modular Batch and Modular Incremental networks,
generalisation levels were slightly higher than those obtained
with the Batch or Incremental methods. This is perhaps due to
the extra degrees of freedom found on the Modular method.

For comparative purposes, neural networks were also built
using the backpropagation and Cascade Correlation algorithms.
Ten topologies were developed for the backpropagation
networks. Each topology was independently initialised and
trained ten times. The first topology had a single hidden unit.
The number of hidden units was augmented by one with the last

1106 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Table 13
Results obtained with the three RDP learning methods, backpropagation, and cascade correlation using the Soybean benchmark dataset in terms of the level of
generalisation

Dataset RDP Back propagation Cascade correlation
Batch Incr Mod batch Mod incr Mean Mode Min Max STD Mean Mode Min Max STD

1 52.1a 52.1a 52.1a 48.0a 49.16 47.91 33.33 66.66 7.66 53.54 54.16 52.08 54.16 1.00
2 62.5 79.2 79.1a 79.1a 83.37 85.41 68.75 89.58 4.16 83.95 85.41 75 91.66 5.97
3 70.8a 70.8a 72.9a 72.9a 72.97 75 58.33 85.41 6.38 70.83 68.75 68.75 77.08 2.59
4 83.3 70.8 83.3a 85.4a 76.93 79.16 62.5 93.75 6.35 75.83 75 70.83 81.25 3.28
5 64.6a 64.6a 83.3a 81.2a 76.20 75 68.75 85.41 2.70 73.54 70.83 70.83 81.25 3.26
6 68.7a 68.7a 77.0a 79.0a 67.60 68.75 10.41 93.75 13.93 63.75 66.66 60.41 66.66 2.44
7 89.6 79.2 79.1 85.4 76.89 81.25 25 93.75 14.22 78.33 79.16 70.83 83.33 3.28
8 68.7a 68.7a 72.9a 72.9a 73.22 72.91 68.75 79.16 2.31 72.91 72.91 72.91 72.91 1.27E − 06
9 83.3 77.1 83.3a 83.3a 77.29 77.08 60.41 91.66 5.85 76.24 77.08 72.91 81.25 2.23

10 77.1 85.4 85.4a 85.4a 77.70 75 64.58 89.58 3.91 75.83 75 72.91 81.25 2.97
∆b 72.1 71.6 76.8 77.6 73.14 – – – – 72.48 – – – –

The poor results obtained on the first dataset, with all the methods, are due to artifacts in the data.
a Implies that the two classes on the dataset used for the training of the neural network were linearly separable datasets.
b ∆ represents the average over the datasets that were not linear separable.

Table 14
Results obtained with the three RDP learning methods, backpropagation, and cascade correlation using the Wisconsin Breast Cancer dataset benchmark in terms of
the level of generalisation

Dataset RDP Back propagation Cascade correlation
Batch Incr Mod batch Mod incr Mean Mode Min Max STD Mean Mode Min Max STD

1 90.0 93.9 95.4 97.0 96.13 96.97 93.93 98.48 1.12 95.00 95.45 92.42 96.96 1.43
2 97.0 94.2 94.1 95.6 96.63 95.58 94.11 98.52 1.46 93.52 92.64 91.17 95.58 1.58
3 92.7 94.0 97.0 92.5 97.35 97.01 94.03 98.50 1.13 95.52 94.02 94.02 98.50 1.57
4 94.2 97.0 98.5 97.0 96.73 97.05 94.11 100 0.92 95.73 97.05 92.64 98.52 1.76
5 95.7 94.1 95.6 98.5 97.86 98.52 95.58 98.52 0.92 95.88 94.11 94.11 98.52 1.51
6 90.0 90.0 91.4 94.3 90.82 91.42 88.57 92.85 0.81 89.28 88.57 85.71 91.42 1.93
7 97.0 95.5 95.5 94.0 97.08 97.01 94.02 100 0.71 95.22 95.52 92.53 98.50 1.96
8 92.7 94.2 97.1 98.6 98.49 98.55 97.10 100 0.64 95.94 98.55 91.30 98.55 2.71
9 94.2 91.3 94.2 97.1 95.66 95.65 94.20 97.10 0.60 93.33 95.65 86.95 98.55 3.29

10 95.7 92.9 94.3 93.0 95.50 95.77 94.36 97.18 0.95 93.94 94.36 91.54 95.77 1.33
∆a 93.9 93.7 95.3 95.7 96.23 – – – – 94.34 – – – –

a ∆ represents the average over the datasets that were not linear separable.
topology containing a total of ten hidden units. Both learning
rate and momentum were fixed. For the Cascade Correlation,
ten neural networks were trained for each of the ten data
subsets. The generalisation results are presented in terms of
the mean, mode (the most frequently occurring value), min,
max and standard deviation obtained for each data subset. No
average values are given for the mode, min, max and standard
deviation as they are not statistically meaningful in this context.

For the Iris dataset, the maximum of the backpropagation
algorithm generalisation results are comparable but slightly
better than those attained through the different RDP methods,
with respect to the level of generalisation. The performance
of the Cascade Correlation algorithm on the Iris dataset
on the other hand is slightly poorer compared to the RDP
and backpropagation results. Based on the average and
the mode results, the RDP seems to obtain slightly better
generalisation level compared with both backpropagation and
cascade correlation.

For the Soybean dataset, the RDP results for all the
construction methods provide less dispersion and in the
modular methods appear to offer better generalisation than
the backpropagation and Cascade Correlation algorithms. The
sixth dataset for backpropagation provides the highest level of
generalisation at 93.75%, but with minimum values as low as
10.4%, the overall performance is significantly lower than the
Cascade Correlation algorithm. The standard deviation values
obtained with the backpropagation model for this datasets are
particularly high with an average value of 6.75 and a maximum
of 14.22.

In the Wisconsin Breast Cancer dataset, the backpropagation
algorithm provides better generalisation performance compared
to both the RDP and Cascade Correlation.

Overall, within the RDP construction methods, the Modular
Batch and Modular Incremental tend to provide slightly
better performance than the Batch and Incremental one, with
results that are comparable with those obtained with the
backpropagation and the Cascade Correlation algorithms.

Table 15 shows the topology size, in terms of number of
intermediate neurons, obtained using the different methods for
constructing RDP neural networks.

D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108 1107
Table 15
Results obtained with the three learning methods and the Iris benchmark in terms of the number of intermediate neurons needed to transform the original NLS
problem into an LS one

Dataset Iris Soybean Wisconsin breast cancer
Batch Incr Mod batch Mod incr Batch Incr Mod batch Mod incr Batch Incr Mod batch Mod incr

1 1 1 1 2 0a 0a 0a 0a 3 9 6 14
2 0a 0a 0a 0a 1 2 0a 0a 3 10 6 14
3 1 1 1 1 0a 0a 0a 0a 4 10 6 13
4 2 1 0a 0a 1 2 0a 0a 3 12 6 16
5 0a 0a 0a 0a 0a 0a 0a 0a 3 10 7 13
6 0a 0a 0a 0a 0a 0a 0a 0a 3 9 6 12
7 0a 0a 0a 0a 1 2 1 1 3 12 8 18
8 2 1 0a 0a 0a 0a 0a 0a 4 12 8 18
9 0a 0a 0a 0a 1 2 0a 0a 3 9 7 14

10 2 1 1 1 1 2 0a 0a 3 11 8 18
∆b 0.8 0.5 0.3 0.4 0.5 1 0.1 0.1 3.2 10.4 6.8 15

a Implies that the two classes on the dataset used for the training of the neural network were linearly separable datasets.
b ∆ represents the average over the datasets that were not linear separable.
The differences are not very dramatic in small and relatively
simple datasets (Iris and Soybean). In addition, even if
differences are observed, they provide a questionable advantage
since in some cases the Modular Batch method produces
a more efficient topology (less intermediate neurons), while
the incremental versions increase the number of intermediate
neurons.

Although the topology might be slightly larger, this is
compensated by a lower level of complexity given by
the incremental and modular methods. This becomes more
apparent with larger more difficult datasets, as in the Wisconsin
case. While the increase in performance in convergence time
of the Incremental method is 506 times, the increase in the
topology size is just over 3 times. The same can be said
for the Modular Incremental method, where a performance in
convergence times shows an increase of 1000 times compared
to just an under 6 times increase in the topology.

6. Conclusions

The RDP has been shown to be a useful generalisation of
the SLP that has a guaranteed convergence and is capable
of solving NLS problems. The initial limitation of this
tool was the fact that constructing it implied NP-complete
processing. This paper shows the effectiveness of two alternate
methods to construct the RDP which reduce dramatically the
computing time. The incremental method brings down the
complexity of the RDP construction from NP-Complete into
O(n log n) (Elizondo, 1997). The Modular approach breaks
down the original problem into several smaller problems
that can either be solved by using the Incremental or the
Batch methods or a combination of both. This results in a
significant reduction in the level of computation required to
solve the classification problem. The Incremental method is
also best suited for problems of dynamic nature where the
network needs to be trained for new data without losing
the training already achieved (catastrophic interference). In
addition, the modular method provides an additional advantage
when parallel processing means are available.With this method
the problem can be divided in smaller parts; this not only
accelerates the process as a whole, but in addition, enables it
to be solved in independent parts. Speed can be increased if the
parts are processed concurrently. Although the topology can be
larger in some cases, the increase in performance for building
the RDP, especially for large datasets, outweighs the increase in
the number of intermediate neurons. These results show that the
smaller topologies, obtained with the exhaustive Batch method,
do not necessarily produce the best results in terms of level
of generalisation and that maybe more degrees of liberty are
needed to improve the accuracy of the network with respect to
previously unseen data. The results obtained are consistent for
the three benchmarks and are comparable with the ones shown
on recent studies using other learning methods such as SVM
(Camastra & Verri, 2005).

Given that the performance difference is not significant in
most cases, and better in some others, for the incremental
method compared to the Batch method, we can conclude that
the former would be the preferred alternative to construct the
RDP when a single processor is available. If parallel processing
is available, and the Modular approach is used, the modular
Batch would provide the best results, but this method would
be practical only if the size of the dataset is small. For data set
sizes where, due to the NP-complete nature of the problem, the
times start to grow beyond the feasibility of the Batch method,
the Modular Incremental needs to be used again.

The NP-Completeness of the Batch method, renders it
unsuitable for most real world datasets. Thus, either of the
Incremental or Modular Incremental methods presented not
only enhance, but actually enable the use of the RDP in a much
larger range of applications in real world problems.

The results obtained with the RDP are comparable to those
obtained with the backpropagation and the Cascade Correlation
algorithms. The backpropagation algorithm provides slightly
better generalisation results, and the Cascade Correlation
gives results which are very close to those obtained with
the RDP. These results corroborate the ones presented in
Elizondo (1997), where the performance of the RDP was
compared with that of other, more classical, methods including

1108 D.A. Elizondo et al. / Neural Networks 20 (2007) 1095–1108
Back Propagation, Cascade Correlation, Rulex, and Ruleneg
obtaining comparable results.

7. Future research

The Batch growing method for building RDP neural
networks can produce small topologies. This is done by using
the approach of maximum cardinality subset on the selection of
linearly separable subsets. This approach has been proven to be
NP-Complete (Elizondo, 1997). Therefore, heuristic methods
can be applied to overcome this complexity problem (Dréo,
Pétrowski, Siarry, & Taillard, 2006). For instance, the problem
can be simplified by pre-clustering the datasets to obtain a
rough solution. This solution can then be refined using a meta
heuristic technique. For example, a ‘D’ point classification
strategy can be used for the initial clustering of the data and then
a local search strategy like the Tabu Search can be employed to
determine the solution to the NP-complete problem.

The implementation of the Incremental method in this study
involved the addition of a new intermediate neuron every time a
point on the training dataset was not classified correctly by the
existing model. The development of an algorithm for adjusting
the last hyperplane on the network to classify a new point,
before opting to add a new intermediate neuron to the topology,
was proposed by Tajine and Elizondo (1998). It would be of
interest to see if the number of intermediate neurons on the
topology generated by using the Incremental method can be
reduced by this method. It will also be of interest to see how
the generalisation level is affected by this topology reduction
strategy.

It is mentioned in Tajine and Elizondo (1998) that the
Incremental algorithm is suited to dynamic classification
problems and the Batch method is suited to static classification
problems. This needs to be further explored to identify the exact
nature of the problems that can be solved by the two methods.

The implementation of the Modular method uses either the
Batch or the Incremental method to solve the generated subsets
of the original dataset. The use of a combination of the Batch
and the Incremental methods to solve subproblems of a single
Modular problem can be explored.

To simplify the experiments in this study, the datasets used
for the Modular method were randomly split into subsets. It will
be interesting to use instead a clustering technique to split the
datasets into smaller subsets. The Modular method provides a
network of bigger topology whereas at the same time simplifies
the problem by breaking it into subproblems and solving them.
A heuristic can be devised to identify the number of splits
that optimises the compromise between this simplicity of the
Modular building algorithm and the topology generated by it.
The performance of this method can also be enhanced by using
a parallel implementation.

References

Atiya, A. (2005). Learning with kernels: Support vector machines,
regularization, optimization, and beyond. IEEE Transactions on Neural
Networks, 16(3), 781.
Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming
discrimination of two linearly inseparable sets. Optimization Methods and
Software, 1, 23–34.

Blake, C. L., Newman, D. J., Hettich, S., & Merz, C. J. (1998). UCI repository
of machine learning databases.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on
computational learning theory.

Camastra, Francesco, & Verri, Alessandro (2005). A novel kernel method
for clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(5), 801–805.

Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning,
20, 273–297.

Cristianini, N., & Shawe-Taylor, J. (2003). An introduction to support vector
machines: Vol. I. Cambridge University Press.

Dasarathy, B. W. (1980). Nosing around the neighborhood: A new system
structure and classification rule for recognition in partially exposed
environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2(1), 67–71.

Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristics for
hard optimization methods and case studies. Springer.

Elizondo, D. (1997). The recursive determinist perceptron (RDP) and topology
reduction strategies for neural networks. Ph.D. thesis. Université Louis
Pasteur, Strasbourg, France.

Elizondo, D. (2004a). Searching for linearly separable subsets using the class
of linear separability method. In IEEE-IJCNN (pp. 955–960).

Elizondo, D. (2004b). Searching for linearly separable subsets using the class
of linear separability method. In Proceedings of the IEEE-IJCNN (pp.
955–960).

Elizondo, D. (2006). The linear separability problem: Some testing methods.
IEEE Transactions on Neural Networks, 17(2), 330–344.

Elizondo, David, Birkenhead, Ralph, & Taillard, Eric (2006). Generalisation
and the recursive deterministic perceptron. In IEEE International joined
conference on neural networks. Vancouver, Canada.

Elizondo, D. A., & Gongora, M. A. (2005). Current trends on knowledge
extraction and neural networks. In W. Duch, et al., (Eds.), Proceedings of
the IEEE-ICANN. Springer.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annual Eugenics, 7(II), 179–188.

Gates, G. W. (1972). The reduced nearest neighbor rule. IEEE Transactions on
Information Theory, (May), 431–433.

Johnson, D. S., & Preparata, F. P. (1978). The densest hemisphere problem.
Theoretical Computer Science, 6, 93–107.

Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear
programming. SIAM News, 23(5), 1–18.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Rosenblatt, F. (1962). Principles of neurodynamics. Washington DC: Spartan.

Sedgewick, R. (1983). Algorithms (p. 508). Addison-Wesley Publishing
Company.

Tajine, M., & Elizondo, D. (1997). The recursive deterministic perceptron
neural network. Neural Networks, 11, 1571–1588.

Tajine, M., & Elizondo, D. (1998). Growing methods for constructing recursive
deterministic perceptron neural networks and knowledge extraction.
Artificial Intelligence, 102, 295–322.

Tajine, M., Elizondo, D., Fiesler, E., & Korczak, J. (1997). The international
conference on neural networks. IEEE.

Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn. San
Mateo, California: Morgan Kaufmann Publishers.

Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern
separation for medical diagnosis applied to breast cytology. Proceedings of
the National Academy of Sciences, 87(December), 9193–9196.

	Analysis and test of efficient methods for building recursive deterministic perceptron neural networks
	Introduction
	Linear separability
	Background
	Preliminaries

	Methods for testing linear separability

	Methods for building RDP neural networks
	The batch method
	Description of the method
	Example

	The incremental method
	Description of method
	Example

	The modular method
	Description of method
	Example

	Comparison procedure
	Results and discussion
	Conclusions
	Future research
	References

