
The Generalisation of the Recursive Deterministic Perceptron

David Elizondo, Ralph Birkenhead, and Eric Taillard

Abstract— The Recursive Deterministic Perceptron (RDP)
feed-forward multilayer neural network is a generalisation of
the single layer perceptron topology. This model is capable
of solving any two-class classification problem as opposed to
the single layer perceptron which can only solve classification
problems dealing with linearly separable sets (two classes X
and Y of IRd are said to be linearly separable if there exists
a hyperplane such that the elements of X and Y lie on
the two opposite sides of IRd delimited by this hyperplane).
For all classification problems, the construction of an RDP
is done automatically and convergence is always guaranteed.
Three methods for constructing RDP neural networks exist:
Batch, Incremental, and Modular. The Batch method has been
extensively tested. However, no testing has been done before
on the Incremental and Modular methods. Contrary to the
Batch method, the complexity of these two methods is not NP-
Complete. A study on the three methods is presented. This
study will allow the highlighting of the main advantages and
disadvantages of each of these methods by comparing the results
obtained while building RDP neural networks with the three
methods in terms of the level of generalisation. The networks
were trained and tested using the following standard benchmark
classification datasets: IRIS and SOYBEAN.

I. INTRODUCTION

One of the biggest limitations of the single layer per-
ceptron topology (SLPT), introduced by Rosenblatt [14], is
its inability to handle classification problems dealing with
non-linearly separable (NLS) sets. The Recursive Determin-
istic Perceptron feed-forward neural network [8, 15] is a
multilayer generalisation of this topology, which provides
a solution to any two-class classification problem (even
if the two classes are NLS). The RDP neural network is
guaranteed to converge, does not need any parameters from
the user, does not suffer from catastrophic interference, and
provides transparent extraction of knowledge as a set of rules
[11]. These rules can be generated, using a computational
geometry approach, as a finite union of open polyhedral sets.

The approach taken by the RDP is to augment the affine
dimension of the input vectors, by adding to these vectors
the outputs of a sequence of intermediate neurons as new
components. Each intermediate neuron (IN) corresponds to
an SLPT. This allows for additional degrees of freedom
for transforming the original NLS problem into a linearly
separable (LS) one (two subsets X and Y of IRd are said
to be linearly separable if there exists a hyperplane such
that the elements of X and Y lie on the two opposite sides

David Elizondo and Ralph Birkenhead are with the Centre for Com-
putational Intelligence, School of Computing, De Montfort University,
The Gateway, Leicester, LE1 9BH, UK, (email: rab@dmu.ac.uk, eli-
zondo@dmu.ac.uk).

Eric Taillard is with the EIVD, University of Applied Sciences of West-
ern Switzerland, Route de Cheseaux 1, Case postale, CH-1401 Yverdon,
Switzerland, (email: Eric.Taillard@heig-vd.ch).

of IRd delimited by this hyperplane). These INs are added
progressively, one at each time step. The algorithm stops
when the two classes become LS.

Three methods exist for constructing an RDP neural net-
work. These methods are Batch, Incremental, and Modular
learning, and were introduced by one of the authors in [16].
They produce a multilayer topology which, contrary to the
SLPT, is capable of solving any classification problem even if
the classes considered are NLS. The Batch method, limited
by its NP-Complete strategy for creating an RDP network
and producing small topologies, has been extensively tested
in [8]. However, no testing has been done on the Incre-
mental and Modular methods which offer polynomial time
complexity with slightly larger topologies. In this paper, for
the first time, a comparison study on the performance of
the three methods is presented. This study highlights the
main advantages and disadvantages of each of the methods
in terms of the level of generalisation obtained by using
the three methods to build RDP neural networks for two
machine learning benchmark classification problems. It is
expected that the results obtained in this research will show
the potential for using the Incremental and Modular methods
for building RDP neural networks and thus help to popularise
the use of RDP neural networks for solving classification
problems.

To illustrate the principle for building an RDP neural
network the NLS 2-input Exclusive-OR (XOR) problem can
be used. For this illustration, the Batch learning method will
be used. This problem consists of classifying the two classes
X = {(0, 0), (1, 1)} and Y = {(0, 1), (1, 0)}, which are
NLS. To perform the NLS to LS transformation, a subset
of patterns which is LS from the rest of the patterns is
selected. For example, the subset {(0, 0)} ⊂ X ∪ Y can be
selected, since {(0, 0)} and {(0, 1), (1, 0), (1, 1)} are LS (by
the hyperplane Pt = {(x1, x2) ∈ IR2 | 2 ∗ x1 + 2 ∗ x2 − 1 =
0}). Therefore:

2 ∗ 0 + 2 ∗ 0 − 1 < 0

and

2∗1+2∗0−1 > 0, 2∗0+2∗1−1 > 0, 2∗1+2∗1−1 > 0.

Thus, the intermediate neuron IN1 corresponding to the
SLPT of weight vector �w = (2, 2) and threshold t = −1
“associated” to the hyperplane Pt is created. The output
of IN1 allows us to add, to the input vectors, one column
by assigning the value -1 to the input pattern {(0, 0)},
and the value 1 to the remaining three input patterns
{(0, 1), (1, 0), (1, 1)}. So, this SLPT produces the following
sets of augmented input vectors: X ′ = {(0, 0,−1), (1, 1, 1)}
and Y ′ = {(0, 1, 1), (1, 0, 1)}. Now, X and Y are LS by the

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1776

hyperplane P2 = {(x1, x2, x3) ∈ IR3 | −2 ∗x1 − 2 ∗x2 +4 ∗
x3 − 1 = 0)}. Hence:

−2∗0+−2∗0+4∗−1−1 < 0,−2∗1+−2∗1+4∗1−1 < 0,

and

−2∗1+−2∗0+4∗1−1 > 0,−2∗0+−2∗1+4∗1−1 > 0.

Next, a second intermediate neuron IN2 (output neuron)
which corresponds to the SLPT with the weight vector
�w = (−2,−2, 4), and threshold t = −1, associated to
the hyperplane P2, is created. The final result is a two
layer RDP neural network solving the XOR classification
problem since the output value of this neural network is -1 for
the vector patterns {(0, 0), (1, 1)}, and 1 for the remaining
vector patterns {(0, 1), (1, 0)}. Figure 1 shows a graphical
representation of the final RDP neural network which solves
the XOR classification problem.

I2 BIAS

IN1

IN2

I1

22

−2

−1

−24 −1

Fig. 1. RDP neural network for solving the XOR classification problem (the
intermediate layer contains only one component, IN1, and IN2 corresponds
to the output neuron of the RDP

Contrary to other learning methods such as backpropa-
gation, the construction of an RDP neural network, with a
100% correct decision boundary on all training data sets, is
always guaranteed. The minimum that can be expect from
any learning method is to be able to correctly map all of its
training data set. Actually, for any given classification prob-
lem, there are an infinite number of RDP neural networks
which solve it (all with a 100% correct decision boundary
on all training data sets) exist. The choice of a particular
RDP allows control of the level of generalisation.

The RDP is a linear method that combines, in a cascade
fashion, a series of linear single layer perceptrons to build
a neural network. Other linear learning methods on LS
and NLS data include Support Vector Machines (SVM)
[4, 1, 2, 3]. They are trained by finding a hyperplane that
linearly separates the data set by solving a constrained
quadratic programming optimisation problem. In the case of
NLS data, the data is mapped into some other Euclidean
space. Thus, SVM is still doing a linear separation but in a
different space. A kernel function must be found and used
on a SVM. In its simplest form a kernel function calculates
the dot product of two training vectors. This helps on the
evaluation of the correct classification of each training vector.

Some preliminary results on the level of generalization
between the Batch RDP learning method and other growing
methods including Cascade Correlation, RuleNeg, and Rulex,
are presented in [15]. The levels of generalization obtained-
with the Batch RDP were comparable with those obtained
with the other growing methods.

This paper is divided into seven sections. In the second
section some of the notions used throughout this paper
are introduced. Section three introduces the three methods
for building RDP neural networks. These methods include,
Batch, Incremental, and Modular. In section four, the proce-
dure used to compare the three learning methods is presented.
Two machine learning benchmarks (Iris and Soybean) were
used and datasets were generated using cross validation.
The three learning methods are compared in terms of their
level of generalisation. Section five presents some results and
discussion. A summary and some conclusions are presented
in section six. In the last section, some future research ideas
are proposed.

II. BACKGROUND

In this section, some of the standard notions used through-
out this paper are introduced, together with some definitions
and properties.

A. Preliminaries

The following standard notions are used: Let E,F ⊂ IRd,

• Card(E) stands for the cardinality of a set E. E \ F
is the set of elements which belongs to E and does not
belong to F .

• E ⊕ F is the set of elements of the form �e + �f with
�e ∈ E and �f ∈ F .

• E � F stands for E ⊕ −(F), i.e. the set
of elements of the form �e − �f with �e ∈ E
and �f ∈ F . If E = {(1, 2), (−1, 2.5)} and
F = {(2.2, 3), (3.1, 1)}, then E � F corresponds
to {(−1.2,−1), (−2.1, 1), (−3.2,−0.5), (−4.1, 1.5)}.
Im(E,G) = {(x1, ..., xd, xd+1) ∈ G | (x1, ..., xd) ∈
E.

Let �p1, �p2 be the standard position vectors representing
two points P1 and P2 in IRd,

• The set {t�p1 + (1 − t)�p2 | 0 ≤ t ≤ 1} is called the
segment between �p1, �p2 and is denoted by [�p1, �p2].

• The dot product of two vectors �u = (u1, ..., ud), �v =
(v1, ..., vd) is defined as �uT�v = u1v1 + ... +
udvd. Adj(�u, r) = (u1, ..., ud, r) and by extension
Adj(S, r) = {Adj(�x, r) | �x ∈ S}.

• P(�w, t) stands for the hyperplane {�x ∈ IRd | �wT �x+t =
0} of IRd of the normal �w, and the threshold t. IP will
stand for the set of all hyperplanes of IRd.

The fact that two sub-sets X and Y of IRd are linearly
separable is denoted by X || Y or X || Y (P). Thus if
X || Y (P(�w, t)), then (∀�x ∈ X, �wT �x + t > 0 and ∀�y ∈
Y, �wT �y + t < 0) or (∀�x ∈ X, �wT �x + t < 0 and ∀�y ∈
Y, �wT �y + t > 0).

Let X,Y ⊂ IRd, IP (X,Y) = {P ∈ IP | X || Y (P)}.

1777

TABLE I

BATCH LEARNING ALGORITHM

Batch(X, Y)
Batch(X, Y) -data: two disjoint finite subsets X, Y of IRd,
-result: A RDP P = [(�w0, t0), ..., (�wn−1, tn−1)]
which transforms X and Y into two LS classes. (An RDP linearly
separating X, Y , by adding one IN to the RDP constructed by this
algorithm is obtained.
This IN corresponds to the output neuron.)
i := 0; X0 := X; Y0 := Y ; X′

0 := X; Y ′
0 := Y ; S0 = X ∪ Y ;

WHILE not(Xi || Yi) do
BEGIN

SELECT: Select a non empty subset Zi from X′
i or from Y ′

i
(if it exits)

such that Zi ‖ (Si \ Zi)(P(�wi, ti)) ;
(i.e., (Zi ⊂ X′

i or Zi ⊂ Y ′
i) and Zi ‖ (Si \ Zi)(P(�wi, ti))

CASE: Zi ⊂ X′
i

Si+1 := Adj(Zi,−1) ∪ Adj(Si \ Zi, 1);
X′

i+1 := Im(X′
i, Si+1) \ Im(Zi, Si+1);

Y ′
i+1 := Im(Y ′

i , Si+1);
Xi+1 := Im(Xi, Si+1);
Yi+1 := Si+1) \ Xi+1;
i := i + 1;

CASE: Zi ⊂ Y ′
i

Si+1 := Adj(Zi,−1) ∪ Adj(Si \ Zi,−1);
Y ′

i+1 := Im(Y ′
i , Si+1) \ Im(Zi, Si+1);

X′
i+1 := Im(X′

i, Si+1);
Xi+1 := Im(Xi, Si+1);
Yi+1 := Si+1) \ Xi+1;
i := i + 1;

END;

Let P ∈ IP (X,Y), CY (X,P) is the half space delimited
by P and containing X (i.e. CY (X,P) = {�v ∈ IRd | �uT�v +
t > 0} if for some �x ∈ X, �uT �x + t > 0).

III. METHODS FOR BUILDING RDP NEURAL NETWORKS

The three methods for building RDP neural networks are
Batch, Incremental and Modular. The Batch method follows
a selection strategy based on searching homogeneous LS
subsets (i.e., whose elements belong to the same class) from
a set of NLS points. With the Incremental approach, all
the previous knowledge learned before when adding new
knowledge to the RDP does not have to be retrained. The
modular approach allows to combine several RDP models,
within a single RDP, without having to do any further
training.

A. The Batch Method

1) Description of the Method: The Batch method (table
I) uses an LS subset selection strategy which consists on
selecting a set of LS points which belong to the same class
and have maximum cardinality. This algorithm stops after
at most n − 1 steps, where n corresponds to the number of
learning patterns

2) Example: In this subsection, the use of the Batch
learning method, presented in Table I, is illustrated by
applying it to an NLS 2D classification toy example. The
NLS 2D classification problem consists of two classes 1 (+),
2 (
) (see Fig. 2).

 0

 2

 4

 6

 8

 10

0 2 4 6 8 10

Fig. 2. 2D plot of the two class classification problem used to illustrate
the Batch learning algorithm (+ = class 1, � = class 2)

A = {(3, 2), (4, 2), (2, 3), (3, 3), (4, 3), (2, 4), (3, 4), (4, 4),
(2, 5), (3, 5), (4, 5), (2.6), (3, 6), (4, 6), (2, 7), (3, 7),
(4, 7), (5, 7), (6, 7), (7, 7), (4, 8), (5, 8), (6.8)},

B = {(3, 0), (4, 0), (5, 0), (6, 0), (3, 1), (4.1), (5, 1), (6, 1),
(5, 2), (6, 2), (1, 3), (5, 3), (6, 3), (5, 4), (6, 4), (5, 5),
(6, 5), (7, 5), (8, 5), (5, 6), (6, 6), (7, 6), (8, 6), (8, 7),
(9, 7), (2, 8), (7, 8), (8, 8), (5, 9), (6, 9), (7, 9), (8, 9)}.

After applying the Batch learning method in Table I to
this problem, an RDP containing seven INS which linearly
separates A and B is obtained. Table II shows the LS subsets
selected for each IN (at each step, the selected LS subset was
of maximal cardinality). Table III shows the weight vectors
and thresholds found for each IN. A projection of the selected
LS subsets used in the different steps for building the RDP
is shown in Fig. 3. Fig. 4 shows the RDP topology found by
the learning algorithm described in Table I for solving this
problem.

B. The Incremental Method

1) Description of Method: To do the Incremental or
progressive learning, the network is trained with a subset
of the training data set. Once the RDP network is trained,
training can be restarted with a new point. If this new
point is not well classified by the existing RDP, then the
new knowledge can be interpolated without disturbing the
previously acquired knowledge. This can be done with the
addition of a new IN.

1778

TABLE II

LS SUBSETS SELECTED BY THE BATCH LEARNING ALGORITHM

DESCRIBED IN TABLE 2 APPLIED TO THE TWO-DIMENSIONAL

TWO-CLASS CLASSIFICATION PROBLEM.

Step # Selected subset Class
1 {(4, 0), (5, 0), (6, 0), (4, 1), (5, 1), (6, 1), (5, 2), A

(6, 2), (5, 3), (6, 3), (6, 4), (7, 5), (8, 5), (7, 6),
(8, 6), (8, 7), (9, 7), (8, 8)}

2 {(2, 8, 0), (5, 9, 0), (6, 9, 0), (7, 9, 0), (8, 9, 0)} A
3 {(3, 0, 0, 0), (3, 1, 0, 0), (1, 3, 0, 0)} A
4 {(3, 2, 0, 0, 0), (4, 2, 0, 0, 0), (2, 3, 0, 0, 0), B

(3, 3, 0, 0, 0), (4, 3, 0, 0, 0), (2, 4, 0, 0, 0),
(3, 4, 0, 0, 0), (4, 4, 0, 0, 0), (2, 5, 0, 0, 0),
(3, 5, 0, 0, 0), (4, 5, 0, 0, 0), (2, 6, 0, 0, 0),
(3, 6, 0, 0, 0), (2, 7, 0, 0, 0), (3, 7, 0, 0, 0)}

5 {(4, 6, 0, 0, 0, 1), (4, 7.0, 0, 0, 1), (4, 8, 0, 0, 0, 1), B
(5, 8, 0, 0, 0, 1)}

6 {(5, 4, 0, 0, 0, 1, 1), (5, 5, 0, 0, 0, 1, 1), A
(6, 5, 0, 0, 0, 1, 1), (5, 6, 0, 0, 0, 1, 1),
(6, 6, 0, 0, 0, 1, 1)}

TABLE III

RDP WEIGHT VECTORS AND THRESHOLD VALUES OBTAINED BY THE

BATCH LEARNING ALGORITHM (TABLE 2) FOR EACH OF THE INS

i (Step) �wi (Weight vector) ti, (Threshold)
1 (19.1, -12.4) -4.0
2 (-3.5.21.3, 0.0) -15.0
3 (-6.7. -6.9, - 1 .O. 0.0) 4.0
4 (6.2. 1.8, 1.0, 1.0, 3.0) -1.0
5 (21.6, -6.6, 1.0, 7.0, 8.0, -6.0) 2.0
6 (0.4, -1.5, -3.0.0.0, - 1 .o, 2.0, 1.0) -1.0
7 (5.8, 1.3,4.0,7.0.5.0, 1.0. 1.0,3.0) -5.0

IN1

IN3

IN4

IN6

IN5

IN2

 0

 2

 4

 6

 8

10

0 2 4 6 8 10

Fig. 3. Projection in a plane of the LS subsets selected by the Batch learning
algorithm described in Table I to create the INs necessary to construct the
RDP

I2

BIAS

I1

IN1 IN2 IN3 IN4 IN5 IN6 IN7

Fig. 4. The topology of the RDP for solving the 2D classification problem
obtained by applying the Batch learning algorithm described in Table I (IN7
corresponds to the output neuron)

2) Example: The Incremental learning method is illus-
trated by applying it to the same problem used to illustrate
the Batch learning method (see Fig. 2). First a data subset is
selected

A1 = {(3, 2), (2, 3), (3, 3), (2, 4), (3, 4), (4, 4), (2, 5),
(3, 5), (4, 5), (2, 6), (3, 6), (4, 6), (2, 7), (3, 7),
(4.7), (5, 7), (6, 7), (4, 8), (5, 8), (6, 8)}

from sets A and

B1 = {(3, 0), (4, 0), (5, 0), (6, 0).(3, 1), (4.1), (5, 1),
(6, 1), (5, 2), (6, 2), (5.3), (6, 3), (5.4), (6, 4),
(5, 5), (6, 5), (7, 5), (8, 5), (6, 6), (7, 6), (8, 6),
(8, 7), (9, 7), (7, 8), (8, 8), (8, 9)}

and B which are linearly separable by the hyperplane
P ((−42, 24),−85). Therefore, A1‖pB1 where
P = [((−42, 24),−85)]. A = A1

⋃
(p1, p2, p3) where

p1, p2 and p3 correspond respectively to (4, 2), (4, 3),
and (7, 7) and B = B1

⋃
p4, p5, p6, p7, p8, p9 where

p4, p5, p6, p7, p8, and p9 correspond respectively to
(1, 3), (5, 6), (2, 8), (5.9), (6, 9), and (7, 9) (Fig. 5). Next,
the remaining points p1, ..., p9 are “interpolated” and the
RDP containing ten INS shown in Table IV which linearly
separates A and B is obtained.

C. The Modular Method

1) Description of Method: The idea behind modular neu-
ral networks is to divide the original problem into smaller
sub-problems, each of which is to be solved by a sub-
network. These sub-networks are then assembled together
into a global network which solves the original problem. The
following theorem shows how to join the sub-networks.

Theorem 1: Let A1, A2, B1, B2 be finite subsets of IRd.
Let P1, P2, P3, P4 be RDPs on IRd such that A1‖>

P1
B1,

A1‖>
P2

B2, A2‖>
P3

B1, A2‖>
P4

B2 Let

Q = [((1,−1, 1,−1), 3), ((3, 5, 2, 5, 5),−3)].

Thus, if P = Q ◦ [P1, P2, P3, P4], then
(A1

⋃
A2)‖>

P (B1

⋃
B2)

The complete proof of the this property is given in [16].
Assuming that ∀(�x) ∈ (A1

⋃
A2

⋃
B1

⋃
B2)F(P1)((�x) =

0,F(P2)((�x) = 0,F(P3)((�x) = 0,F(P4)((�x) = 0. Each

1779

P9P8P7

P6

P4

P3P5

P2

P1

A1

B1

 0

 2

 4

 6

 8

10

0 2 4 6 8 10

Fig. 5. Cluster subsets A1 and B1 used to build the first RDP and individual
points added, one at the time, p1, ..., p9 used to illustrate the Incremental
learning method.

RDP P1, P2, P3, and P4 will produce the outputs described
in table V for each of the data subsets:

Let:

S1 = {(1,−1, 1,−1), (1,−1, 1, 1), (1, 1, 1,−1),

(1, 1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1, 1),

(1, 1,−1, 1)}
and

S2 = {(−1,−1,−1,−1), (−1,−1, 1,−1), (−1, 1,−1,−1),

(−1, 1, 1,−1), (−1,−1,−1, 1), (1,−1,−1,−1),

(1,−1,−1, 1)}
Then S1

⋂
S2 = 0,

{(F(P1)(�a),F(P2)(�a),F(P3)(�a),F(P4)(�a)|�a ∈ A1 ∪ A2}
⊆ S1

and

{(F(P1)(�b),F(P2)(�b),F(P3)(�b),F(P4)(�b)|�b ∈ B1 ∪ B2}
⊆ S2

Let Q = [((1,−1, 1,−1), 3), ((3, 5, 2, 5, 5),−3)], then
S1‖>

QS2. Therefore, if P = Q ◦ [P1, P2, P3, P4], then
(A1 ∪ A2) ‖>

P (B1 ∪ B2)

TABLE IV

RDP WEIGHT VECTORS AND THRESHOLD VALUES OBTAINED BY THE

INCREMENTAL LEARNING ALGORITHM FOR EACH OF THE INS

i Step) �wi (Weight vector) ti (Threshold)
1 (-41.9994,24) 119.997
2 (-83.994,48, -35.0012) 226.972
3 (-167.988.96, -70.0024, -21.9913) 455.899
4 (335.97, -192, 140.005,43.98

26,23.947) 32.095
5 (671.94, -384,280.01,87.96 52,

47.894, -919.96) -551.61
6 (1343.88, -768,560.02, 175.93,

95.788, -1839.92, -304.161) 480.416
7 (2687.76, -1536, 1120.04, 351.86,

191.576, -3679.84, -608.322,
- 1887.79) -94.549

8 (5375.52, -3072,2240.08,103.12,
383.152, -7359.68,
-1216.54, -3775.58, -832.398) 1154.148

9 (10751, -6144.4480.16, 1407.44,
766.304, -14719.4,
-2433.28, -7551.16, -1664.8,
-2175.64) 1927.436

10 (-21502, 12288, -8960.32,
-2814.88, -1532.61,
29438.8.4866.56, 15102.3, 3329.6,
4351.28, 1796.44) -2062.32

TABLE V

OUTPUTS PRODUCED BY THE RDPS P1, P2, P3, AND P4

A1 A2 B1 B2

P1 1 ± 1 -1 ± 1
P2 ± 1 1 ± 1 -1
P3 1 ± 1 ± 1 -1
P4 ± 1 1 -1 ± 1

2) Example: To illustrate the modular construction of an
RDP, the same classification problem used to illustrate the
Batch and Incremental methods is used. The two original
classes are decomposed into the following subclasses:

A1 = {(3, 2), (4, 2), (2, 3), (3, 3), (4, 3), (2, 4), (3, 4), (4, 4),
(2, 5), (3, 5), (4, 5), (2, 6), (3, 6), (4, 6), (2, 7), (3, 7)},

A2 = {(4, 7), (5, 7), (6, 7), (7, 7), (4, S), (5, 8), (6, 8)},

B1 = {(3, 0), (4, 0), (5, 0), (6, 0), (3, 1), (4, 1), (5, 1), (6, 1),
(5, 2), (6, 2), (1, 3), (5, 3), (6, 3), (5, 4), (6, 4), (5, 5),
(6, 5), (7, 5), (8, 5), (5, 6), (6, 6), (7, 6), (8, 6), (8, 7),
(9, 7)},

B2 = {(2, 8), (7, 8), (8, 8), (5, 9), (6, 9), (7, 9), (8, 9)},
as shown in Fig. 6 (A = A1

⋃
A2 and B = B1

⋃
B2).

Next a RDP to linearly separate each subclass from the other
subclasses, as shown below, is created:

A1‖>
P1

B1, A1‖>
P2

B2, A2‖>
P3

B1, A2‖>
P4

B2

1780

A2

B2

A1

B1

 0

 2

 4

 6

 8

10

0 2 4 6 8 10

Fig. 6. Clusters of the data subsets A1, A2, B1, and B2 used to illustrate
the modular learning algorithm for constructing RDP neural networks.

I2I1 BIAS

IN1

IN2

P1

P’’’

P2 P4P3

IN2

27 −5 62 40

−7

−16

−9
7

−1

−38

0 10 76

85

−172

−608 23

28
145

219

1 −1 3 1 −1

3 2 5 −355

Fig. 7. RDP topology for solving the two-dimensional classification
problem obtained by applying the modular learning algorithm.

where P1 = [((−7,−9),−38), ((27,−5, 62), 40)], P2

= [((0, 10), 76)], P3 = [((85, −172), −608)], and P4 =
[((−16, 7),−1), ((23, 28, 219), 145)]. Once the four RDP
modules are created, they can be unified into a single RDP
network by using the RDP computed above to linearly
separate S1 and S2. The final topology of the FLDP that
combines the four modules for linearly separating classes A
and B is shown in Fig. 7. The RDPs P1, P2, P3, P4 can be
constructed in a parallel fashion since their constructions are
independent from each other.

IV. COMPARISON PROCEDURE

Two machine learning benchmark data sets were used in
the comparison study. These benchmarks included Iris, and
Soybean [6]. These data sets are widely used to compare
different classification algorithms. The IRIS dataset classifies

TABLE VI

INPUTS AND OUTPUTS USED ON THE IRIS CLASSIFICATION PROBLEM.

Attributes (In cm) Output Output Classes

Sepal Length Iris plant type Iris Setosa
Sepal Width Iris Versicolour
Petal Length Iris Virginica
Petal Width

TABLE VII

INPUTS AND OUTPUTS USED IN THE SOYBEAN CLASSIFICATION

PROBLEM.

Attributes Output Output classes

Date leaf-shread Disease type brown-spot
plant-stand stem alternarialeaf-spot
precipitation stem-cankers frog-eye-leaf-spot
temperature canker-lesion
hail fruiting-bodies
crop-hist external decay
area-damaged fruit-pods
severity fruit spots
seed-tmt seed
germination plant-growth

a plant as being an Iris Setosa, Iris Versicolour or Iris
Virginica. The dataset describes every iris plant using four
input parameters (Table VI). The dataset contains a total
of 150 samples with 50 samples for each of the three
classes. All the samples of the Iris Setosa class are linearly
separable from the rest of the samples (Iris Versicolour and
Iris Virginica). Therefore, only the samples belonging to the
Iris Versicolour and the Iris Virginica classes were used in
this study. Some of the publications that used this benchmark
include: [12] [13] [5] and [8].

The SOYBEAN classification problem contains data for
the disease diagnosis of the Soybean crop. The dataset
describes the different diseases using symptoms. The original
dataset contains 19 diseases and 35 attributes. The attribute
list was limited to those attributes that had non trivial values
in them (Table VII). Thus there were only 20 out of the 35
attributes that were included in the tests. Only two classes
were selected based on the number of samples available and
used to build the network. The brown spot, alternaria leaf
spot and frog eye leaf spot, each having 40 samples were
selected and were used. The networks developed were trained
to separate the disease class alternaria leaf spot from the other
two diseases brown spot and frog eye leaf spot.

The technique of cross validation was applied to split the
benchmarks into training and testing data sets. The datasets
were randomly divided into ’n’ equal sized testing sets that
were mutually exclusive [17]. The remaining samples were
used to train the networks. In this study, the classification
benchmark data sets were divided into ten equally sized data
sets. Sixty percent of the samples were used for training
the networks and the remaining forty percent were used
for testing purposes. Thus, for each of the three training
algorithms, ten different neural networks were developed and
tested using different combinations of test sets that were
picked up from the equally divided sample sets.

1781

To train the modular networks, each of the cross validation
training data sets was further divided into four subsets. The
first two subsets contained each half of the data for class
one. The remaining two subsets contained each half of the
data for class two.

This study was based on the comparison between the
level of generalisation, with respect to previously unseen
data, obtained with each of the three learning algorithms for
building RDP neural networks.

V. RESULTS AND DISCUSSION

The three methods for constructing RDP neural networks
were compared based on their level of generalisation on pre-
viously unseen data. The IRIS, and SOYBEAN benchmark
data sets were used for building neural networks using these
methods. The technique of cross validation was applied to
split the benchmarks into training and testing data sets.

Tables VIII, and IX show the level of generalisation, in
terms of percentage of well classified samples, obtained using
the different methods for constructing RDP neural networks.
Some of the training subsets were linearly separable (marked
with an asterisk). Thus, a single layer perceptron network
was used to train them. No incremental or modular networks
were developed using these LS subsets. Several of the
originally NLS training sets became LS after splitting them
into smaller subsets to use on training the modular method.
This simplified the learning procedure.

The results obtained in terms of generalisation show that
both the Batch and the Incremental methods offer comparable
performance. The average (Δ) results on the level of general-
isation obtained on both methods, using the two benchmarks,
only differ by 1%. The occasional deviations from this
behaviour could be attributed to the failure of the perceptron
based linear separability determination algorithm for which
the number of maximum weight updates allowed has to be
specified before hand. The results obtained using the Iris data
set are very similar for both methods with the Incremental
method outperforming the Batch one for data sets 4 and 6
by 2.5% and 7.5% respectively. The results obtained with
both methods using the Soybean data set vary more than
the ones obtained with the Iris dataset. Here the Incremental
method outperforms the Batch one on data sets 4,6 and 9,
and opposite can be observed on data sets 2, 5, 7, and 10.
Therefore, the incremental approach, with an O(n log n)
complexity, is preferable to the Batch approach with an
NP-Complete complexity [8]. The Incremental method is
also best suited for problems of dynamic nature where the
network needs to be trained for new data without loosing the
training already achieved (catastrophic interference). Both
the Batch and the Incremental methods outperform the two
modular approaches.

The modular approaches offer the possibility of a parallel
implementation where a divide and conquer approach is used
to break up a large problem into smaller problems. If a
modular approach is to be used to take advantage of this,
the Modular/Batch approach provides better results than the
Modular/Incremental approach.

TABLE VIII

RESULTS OBTAINED WITH THE THREE LEARNING METHODS AND THE

IRIS BENCHMARK IN TERMS OF THE LEVEL OF GENERALISATION (* -

IMPLIES THAT THE TWO DATA SETS USED FOR THE TRAINING OF THE

NEURAL NETWORK WERE LINEARLY SEPARABLE DATA SETS, Δ

REPRESENTS THE AVERAGE OVER THE DATA SETS THAT WERE NOT

LINEAR SEPARABLE).

Iris

Data Batch Incr Mod Mod
Set Batch Incr
1 100 100 97.5 97.5
2 92.5* 92.5* 92.5* 92.5*
3 100 100 100 100
4 92.5 95 90 90
5 97.5 97.5 95 90
6 92.5 100 97.5 95
7 97.5* 97.5* 97.5* 97.5*
8 97.5 97.5 95 90
9 97.5 97.5 95 92.5
10 100 100 100 95
Δ 97.2 98.4 96.25 93.75

TABLE IX

RESULTS OBTAINED WITH THE THREE LEARNING METHODS AND THE

SOYBEAN BENCHMARK IN TERMS OF THE LEVEL OF GENERALISATION

(* - IMPLIES THAT THE TWO DATA SETS USED FOR THE TRAINING OF

THE NEURAL NETWORK WERE LINEARLY SEPARABLE DATA SETS, Δ

REPRESENTS THE AVERAGE OVER THE DATA SETS THAT WERE NOT

LINEAR SEPARABLE).

Soybean

Data Batch Incr Mod Mod
Set Batch Incr
1 100* 100* 100* 100*
2 93.7 85.4 87.5 75
3 79.2* 79.2* 79.2* 79.2*
4 91.6 95.8 83 52.1
5 98 79.2 75 52.1
6 83.3 93.7 100 77.1
7 98 95.8 79 75
8 95.8* 95.8* 95.8* 95.8*
9 83.3 95.8 72.5 91.7
10 90 85.4 79 77.1
Δ 91.13 90.2 82.3 71.4

These results show that the smaller topologies, obtained
with the exhaustive Batch method, do not necessarily produce
the best results in terms of level of generalisation and that
maybe some more degrees of liberty are needed to improve
the accuracy of the network with respect to previously
unseen data. The results obtained are consistent for the two
benchmarks.

VI. FUTURE RESEARCH

The Batch growing method for building RDP neural net-
works can produce small topologies. This is done by using
the approach of maximum cardinality subset on the selection
of linearly separable subsets. This approach has been proven
to be NP-Complete [8]. Therefore, heuristic methods can
be applied to overcome this complexity problem [7]. For
instance, the problem can be simplified by pre-clustering the

1782

datasets to obtain a rough solution. This solution can then
be refined using a meta heuristic technique. For example, a
’D’ point classification strategy can be used for the initial
clustering of the data and then a local search strategy like
the Tabu Search can be employed to determine the solution
to the NP-complete problem.

The implementation of the Incremental method in this
study involved the addition of a new intermediate neuron
every time a point on the training data set was not classified
correctly by the existing model. An algorithm for adjusting
the last hyperplane on the network to classify a new point,
before opting to add a new intermediate neuron to the
topology, was proposed by [16]. It would be of interest to
see if the number of intermediate neurons on the topology
generated by using the Incremental method can be reduced
by this method. It will also be of interest to see how the
generalisation level is affected by this topology reduction
strategy.

It is mentioned in [16] that the Incremental algorithm
is suited to dynamic classification problems and the Batch
method is suited to static classification problems. This needs
to be further explored to identify the exact nature of the
problems that can be solved by the two methods.

The implementation of the Modular method uses either
the Batch or the Incremental method to solve the generated
subsets of the original data set. The use of a combination of
the Batch and the Incremental methods to solve sub problems
of a single Modular problem can be explored.

To simplify the experiments in this study, the data sets used
for the Modular method were randomly split into subsets. It
will be interesting to use instead a clustering technique to
split the data sets into smaller subsets. The Modular method
provides a network of bigger topology while at the same
time simplifing the problem by breaking it into sub problems
and solving them. A heuristic can be devised to identify
the number of splits that optimises the compromise between
this simplicity of the Modular building algorithm and the
topology generated by it. The performance of this method
can also be enhanced by using a parallel implementation.

The perceptron algorithm was used in this work to test for
linear separability among the data subsets. This algorithm
is guaranteed to converge after a finite number of steps if
the two classes are linearly separable. If the classes are not
linearly separable, it will not converge. Other algorithms
for testing linear separability, such as the Class of Linear
Separability [9] and the Simplex method, might provide
different results in terms of generalisation. See [10] for a
survey on methods for testing linear separability.

These results provide good basis to further develop this
study and to compare the topology size (number of interme-
diate neurons), and convergence time obtained with the three
RDP methods.

REFERENCES

[1] A. Atiya. Learning with kernels: Support vector ma-
chines, regularization, optimization, and beyond. IEEE
TNN, 16, May 2005.

[2] B. Boser, I. Guyon, and V. Vapnik. A traning algorithm
for optimal margin classifiers. In Proceedings of the
Fifth Annual Workshop on Computational Learning
Theory, 1992.

[3] C. Cortes and V. Vapnik. Support-vector network.
Machine Learning, 20:273–297, 1995.

[4] N. Cristianini and J. Shawe-Taylor. An introduction
to support vector machines, volume I. Cambridge
University Press, 2003.

[5] B. W. Dasarathy. Nosing around the neighborhood:
A new system structure and classification rule for
recognition in partially exposed environments. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2(1):67–71, 1980.

[6] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz.
UCI repository of machine learning databases, 1998.

[7] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Meta-
heuristics for Hard Optimization Methods and Case
Studies. Springer, 2006.

[8] D. Elizondo. The Recursive Determinist Perceptron
(RDP) and Topology Reduction Strategies for Neural
Networks. PhD thesis, Université Louis Pasteur, Stras-
bourg, France, January 1997.

[9] D. Elizondo. Searching for linearly separable subsets
using the class of linear separability method. In
Proceedings of the IEEE-IJCNN, pages 955–960, April
2004.

[10] D. Elizondo. The linear separability problem: Some
testing methods. Accepted for Publication: IEEE TNN,
2006.

[11] D.A. Elizondo and M.A. Gongora. Current trends on
knowledge extraction and neural networks. In W. Duch
et al., editor, Proceedings of the IEEE-ICANN. Springer,
September 2005.

[12] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annual Eugenics, 7(II):179–188,
April 1936.

[13] G. W. Gates. The reduced nearest neighbor rule. IEEE
Transactions on Information Theory, pages 431–433,
May 1972.

[14] F. Rosenblatt. Principles of Neurodynamics. Spartan,
Washington D.C., 1962.

[15] M. Tajine and D. Elizondo. The recursive deterministic
perceptron neural network. Neural Networks, 11:1571–
1588, 1997.

[16] M. Tajine and D. Elizondo. Growing methods for
constructing recursive deterministic perceptron neural
networks and knowledge extraction. Artificial Intelli-
gence, 102:295–322, 1998.

[17] S. M. Weiss and C. A. Kulikowski. Computer Systems
That Learn. Morgan Kaufmann Publishers, San Mateo,
California, 1991.

1783

