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An abundant literature about vehicle routing and scheduling problems is available in the
scientific community. However, a large fraction of this work deals with static problems where
all data are known before the routes are constructed. Recent technological advances now create
environments where decisions are taken quickly, using new or updated information about the
current routing situation. This paper describes such a dynamic problem, motivated from
courier service applications, where customer requests with soft time windows must be dis-
patched in real time to a fleet of vehicles in movement. A tabu search heuristic, initially
designed for the static version of the problem, has been adapted to the dynamic case and
implemented on a parallel platform to increase the computational effort. Numerical results are
reported using different request arrival rates, and comparisons are established with other

heuristic methods.

Efﬁcient distribution of goods and services is of
paramount importance in today’s competitive mar-
kets because transportation costs represent a non-
negligible fraction of the purchase price of most
products or services. This efficiency is achieved, in
particular, through the determination of good routes
and schedules for the fleet of vehicles that fulfills the
distribution task. An abundant literature may be
found on different types of vehicle routing and
scheduling problems (see, for example, BALL et al.
1995). A large fraction of this work is concerned with
static problems, that is, problems where all data are
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known before the routes are constructed and do not
change thereafter, like the set of customers requir-
ing transportation services, the quantity of goods to
be picked up or delivered at each customer location,
etc. Recent advances in communication and infor-
mation technologies now allow the exploitation of
new or updated information that is revealed as the
routes are executed: a vehicle has broken down or is
unexpectedly delayed, a new customer has just
called in for quick service, etc. These developments
have led to the growth of a new class of problems,
known as dynamic routing and scheduling problems
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(DROR and POWELL, 1993; POWELL, JAILLET and
ODONI, 1995; PSARAFTIS, 1995; LUND, MADSEN, and
RYGAARD, 1996). Such problems are found in many
different application domains, like delivery of petro-
leum products or industrial gases (BELL et al., 1983;
BROWN et al., 1987; BAUSCH, BROWN, and RONEN,
1995), transportation on demand for the elderly or
the handicapped (WILSON and COLVIN, 1977), and
emergency services (GENDREAU, LAPORTE, and SE-
MET, 1997).

This paper is about a dynamic problem motivated
from courier service applications found in the local
operations of international shipping services (e.g.,
Federal Express), where the courier is collected at
different customer locations and brought back to a
central office for further processing and shipping.
Here, the uncertainty comes from the occurrence of
new service requests that must be assigned in real
time to an appropriate vehicle. As opposed to the
static scenario, where all requests are known before
the routes are constructed, each decision must be
taken on the basis of the available requests, that is,
without knowledge of future incoming requests.

The paper is organized along the following lines.
First, the static version of the problem is presented
in Section 1. A problem-solving method based on
tabu search is then briefly introduced in Section 2
(TAILLARD et al., 1997), followed by a description of a
parallel implementation (BADEAU et al., 1997). Sec-
tion 3 introduces the dynamic problem and explains
how the original algorithmic design is modified to
handle a dynamic environment. Computational re-
sults are reported in Section 4, where different ways
of dispatching new incoming requests are compared.

1. STATIC PROBLEM

THE STATIC VERSION of our problem is representative
of a class of problems known as the vehicle routing
problem with time windows (DESROSIERS et al.,
1995). From a graph theoretical perspective, the
problem can be stated as follows. Let G = (V, E) be
a complete undirected graph with vertex set V =
fvg, vy, vy, ..., v,) and edge set E = {(v,, v): v,
v; € V, i <j}. In this graph, vertex v, is the depot
and the remaining vertices are customers to be ser-
viced. Each vertex has a time window [e;, /,], where
e, and [; are the earliest and latest service time,
respectively (with e, the earliest start time and 7,
the latest end time of each route). Finally, a sym-
metric distance matrix D = (d;;) that satisfies the
triangle inequality is defined on E, with travel times
¢;; proportional to the distances.

Given a fixed size fleet of m identical vehicles, the
goal is to find a set of minimum cost vehicle routes,

originating from and terminating at the depot vy,
such that:

e each vehicle scrvices one route;

e cach vertex v,, i = 1, ..., n is visited exactly
once;

e the start time of each vehicle route is greater
than or equal to e;

e the end time of each vehicle route is less than or
equal to /;

o the time of beginning of service b, at each vertex
vi, 1 =1,...,nis greater than or equal to the
earliest service time e;; if the vehicle’s arrival
time ¢, is less than e;, a waiting time w; = (e, —
t;) is incurred.

The objective function f to be minimized over the
set of feasible solutions S is

m n

f(s) = Edk Ea zai(ti = [l
k

=1 i=1

s €S, (1)

where y " = max{0, y}, d, is the total distance trav-
eled onroute k, £ = 1, ..., m, and «; is a lateness
penalty coefficient associated with vertex v,, i =
Lo s vy B

This definition implies that each route must start
and end within the time window associated with the
depot. Furthermore, a soft time window constraint
is found at each customer location. The time window
is soft because the vehicle can arrive before the
lower bound or after the upper bound. If the vehicle
arrives too early, it must wait to start its service. If
the vehicle is too late, a penalty for lateness is in-
curred. That is, the upper bound of the time window
is relaxed into the objective function in a Lagran-
gean fashion. According to objective function, eq. 1,
the penalty coefficients can be adjusted to each cus-
tomer. For example, large coefficients can be associ-
ated with customers with rather strict time require-
ments and small coefficients with customers with
some flexibility.

The next section will now present an algorithm
based on tabu search for solving this problem.

2. ADAPTIVE MEMORY TABU SEARCH

THE TABU SEARCII heuristic for solving the static
problem presented in Section 1 follows the guide-
lines in GLOVER (1989, 1990) and is characterized by
the exploitation of an adaptive memory (ROCHAT
and TAILLARD, 1995). This algorithm can be summa-
rized as follows:

1. Construct I different initial solutions with a sto-
chastic insertion heuristic (i.e., the rule for choos-
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ing the next customer to be inserted contains

stochastic elements).

2. Apply tabu search to each solution and store the
resulting routes in the adaptive memory.
3. For W iterations do:

3.1 Construct an initial solution from the routes
found in the adaptive memory and set this
solution as the current solution.

3.2 For C cycles do:

a. decompose the current solution into D dis-
joint subsets of routes

b. apply tabu search to each subset of routes

c. merge the resulting routes to form the new
current solution

3.3 Add the resulting routes to the adaptive
memory (if indicated).

4. Apply a postoptimization procedure to each indi-
vidual route of the best solution found.

Details about this algorithm may be found in
TAILLARD et al. (1997). In the following, the main
components are briefly introduced.

2.1 Adaptive Memory

As the tabu search heuristic proceeds, the routes
of the best solutions visited during the search are
stored in an adaptive memory. New initial solutions
for the tabu search are then created by combining
routes taken from different solutions in this mem-
ory. This way of combining components of different
high quality solutions to create a new solution is
quite similar to the crossover operator found in ge-
netic algorithms (HOLLAND, 1975). Note that a new
solution produced by the tabu search is included in
the memory if the memory is not filled yet, or the
new solution is better than the worst solution stored
in memory, in which case the latter is removed.

2.2 Decomposition/Reconstruction

Each starting solution is partitioned into D dis-
joint subsets of routes, with each subset or subprob-
lem being processed by a different tabu search (TAIL-
LARD, 1993). When every subproblem is solved, the
new routes are simply merged back to form the new
current solution. The decomposition uses the polar
angle associated with the center of gravity of each
route. Through a sweep procedure, the domain is
partitioned into sectors that approximately contain
the same number of routes. C cycles of decomposi-
tion/reconstruction take place before the final solu-
tion is sent to the adaptive memory for possible
inclusion. At each cycle, the decomposition (i.e., the
subset of routes in each subproblem) changes by
choosing a different starting angle to construct the
sectors.
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2.3 Tabu Search

The tabu search is applied to cach subset of routes
produced through the decomposition procedure.
This tabu search exploits a neighborhood specifi-
cally designed for problems with time windows. The
method for generating this neighborhood is called
the CROSS exchange. It is basically a chain ex-
change procedure, where two segments of variable
length are taken from two different routes and
moved from one route to another. A neighborhood of
manageable size is obtained by restricting the
CROSS exchanges to segments with L service points
at most, where L is a parameter of the algorithm.

2.4 Parallel Implementation

Fast response times are required to copc with
real-time environments. To increase the computa-
tional effort in a given time interval, the tabu search
heuristic was implemented on a network of worksta-
tions (BADEAU et al., 1997). A master—slave scheme
is a natural way to parallelize the algorithm on this
coarse-grained, loosely connected architecture. The
master process manages the adaptive memory and
creates new starting solutions for the slave pro-
cesses which, themselves, apply tabu search to im-
prove the solutions. This scheme induces a multi-
thread search strategy where different search paths
are followed in parallel (CRAINIC, TOULOUSE, and
GENDREAU, 1997). Namely, many different tabu
searches run in parallel, each starting from a differ-
ent initial solution. Although the threads run inde-
pendently, they communicate implicitly through the
adaptive memory as they feed this memory with
their resulting solutions and get new starting solu-
tions from it.

The decomposition procedure allows for another
level of parallelization, because the subproblems
created by the decomposition can be allocated to
different processors. The implementation thus in-
volves the following processes:

e The Manager process that manages the adap-
tive memory and creates new starting solutions.

e R Decomposition processes that decompose a
problem into subproblems for the tabu processes
(see below); each decomposition process corre-
sponds to a distinct search thread.

e The Dispatcher process that dispatches the
work among processors.

e P Tabu processes that apply tabu search to sub-
problems.

The Manager, Decomposition, and Dispatcher
processes are typically located on the same processor
because they require modest computation times,
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Fig. 1. Dispatching situation involving two vehicles (at the time of occurrence of a new request).

whereas a different processor is assigned to each
Tabu process (for a total of P + 1 processors). Pre-
vious experiments (BADEAU et al., 1997) have shown
that the parallel implementation is competitive with
the sequential one, with respect to solution quality,
for the same amount of computational work. How-
ever, this work is done much faster, in terms of wall
clock times, on the parallel platform.

3. DYNAMIC PROBLEM

IN THE DYNAMIC version of the problem, a number of
service requests are not known completely ahead of
time, but are rather dynamically revealed as time
goes by. This situation impacts the problem-solving
method developed for the static problem in a number
of ways, as explained in the following.

3.1 Operating Scenarios

The dynamic operating scenarios are based on the
following assumptions:

¢ Requests must be received before a fixed time
deadline to be serviced the same day. Those that
are received after the deadline, however, may be
kept for the next day. The operations day thus
typically starts with a number of pending or
static requests (for which a solution may have
been constructed beforehand).

¢ Uncertainty comes from a single source, namely
the occurrence of new service requests. In par-
ticular, there is no uncertainty associated with
the service locations, like cancellation. Further-
more, the travel times are assumed to be known
with certainty because no unexpected perturba-
tion comes from the external world (like sudden
congestion on the network caused by an acci-
dent, vehicle breakdown, etc.).

e Communication between the central dispatch
office and the drivers take place at each service
location and is aimed at identifying their next
destination. Consequently, the drivers do not
know the global picture represented by their
current planned route (which may be modified
frequently by the problem-solving procedure).

o If some waiting time is expected at the drivers’
next destination, they are asked to wait at their
current location. This is a form of least commit-
ment strategy, because a movement is per-
formed at the latest possible time to allow for
last minute changes to the planned route due to
the arrival of new service requests. Once a
driver is en route to his next destination, how-
ever, he must necessarily service this location
(i.e., no diversion is allowed).

Figure 1 illustrates a typical situation involving
two vehicles at an instant associated with the occur-
rence of a new service request. In this figure, the
little square is the depot and the circles are cus-
tomer requests. Dotted arcs correspond to completed
movements: customers found at the end of those arcs
are already serviced and are not considered any-
more. The black circles correspond to the current
destination of each vehicle. These customers, as well
as their successors on each route, are still unser-
viced. The current solution thus consists of a set of
planned routes, where each route starts with the
driver’s current destination and ends with the last
customer on the planned route (including the return
trip to the depot). Note that each problem is now
open, in the sense that the starting and ending
points of the planned routes are not the same. As for
the static problem, the objective is to minimize a
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weighted sum of total distance traveled and lateness
at customer locations.

Note that a natural way to quickly handle a new
request, as illustrated in Fig. 1, is through its inser-
tion between two consecutive customers on a
planned route. The insertion place for the new re-
quest is chosen to minimize the additional cost over
all feasible insertion places in the current solution.

3.2 Adaptation of the Static Problem-Solving
Method

Broadly speaking, the dynamic environment is
handled by solving a series of static problems, with
a new problem being defined each time an input
update occurs. The static problem contains the (yet
unserviced) customer requests known at the time of
the input update. Although each static problem pro-
duced by the occurrence of a new event can be solved
by the algorithm presented in the previous section,
the dynamic evolution of the dispatching situation
over time implies a number of non-trival modifica-
tions to the algorithmic design.

The problem-solving method now interacts with
its dynamic environment in the following way:

1. While “no event,” optimize the planned routes
using tabu search;
2. if an event occurs, then
2.1 stop each tabu search thread and add the
routes of their best solution to the adaptive
memory (if indicated);
2.2 if the event is the occurrence of a new re-
quest, then
a. update the adaptive memory through the
insertion of the new request in each solu-
tion;
b. if no feasible insertion place is found, re-
ject the request;

otherwise (end of service at a customer loca-

tion)

a. identify the driver’s next destination, us-
ing the best solution stored in the adaptive
memory;

b. update the other solutions accordingly;

2.3 restart the tabu search processes with new
solutions obtained from the adaptive mem-
ory.

Thus, the tabu search works in background be-
tween the events, trying to find a better set of
planned routes. The search threads are interrupted
whenever an input update occurs (because they do
not work anymore on configurations that represent
the current situation). Here, an input update occurs
when a new request is received, or when a vehicle
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has completed its service at a customer location.
These events are precisely handled as follows:

(a) In case of an end of service at a customer location
(which is not a random event, because the travel
times between the service locations are known
with certainty), the driver must know his next
destination, that is, the next customer to be ser-
viced. Because many different solutions are
maintained in the adaptive memory (e.g., 30 so-
lutions in the current implementation), the best
one is used for this purpose. The remaining so-
lutions in memory are updated by removing this
customer from its current location and by insert-
ing it in the first position in the driver’s planned
route if it is not already there.

(b) In case of occurrence of a new request, the latter
is inserted in all solutions found in the adaptive
memory (see Fig. 1). The insertion place 1s cho-
sen to minimize the additional cost to the cur-
rent solution. If there is no feasible insertion
place in any solution (due to the hard time win-
dow at the depot), the request is rejected. Thus,
the customer is told almost immediately that his
request cannot be handled. Alternatively, if a
feasible insertion is found, the request is ac-
cepted and all solutions with no feasible inser-
tion places are discarded from memory. Then,
the best solution in memory (with the new re-
quest) is processed by a local search heuristic for
further improvement. This heuristic stops at the
first local minimum, using a neighborhood based
on CROSS exchanges. In this way, a solution of
high quality is quickly produced with the new
set of requests (and is available in the adaptive
memory for creating new starting solutions).

After these modifications, the search threads can
be restarted with new solutions constructed from
the updated adaptive memory.

Note finally that the work performed by the
search threads on their current solution is not lost
when they are interrupted by a new event. Rather,
their best solution is returned to the adaptive mem-
ory for possible inclusion (cf., Step 2.1).

3.3 A Finer Refinement

In the decomposition procedure, a fixed number C
of cycles could lead to a loss of diversity in the
adaptive memory, because more solutions would be
returned to and constructed from the adaptive mem-
ory (for a given set of requests) when the time inter-
val between two consecutive events increases. The C
value is thus dynamically adjusted after each event
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with the formula,

H
C=0C,+ AL

where H is the number of calls to the adaptive
memory between the last two events, and R is the
number of decomposition processes or search
threads. Hence, the number of cycles C is based on
the average number of calls to the adaptive memory
per search thread, with a minimum of C, = 6 cycles.
When an increase in the number of calls to the
adaptive memory is observed, the C value also in-
creases: the Tabu processes thus work longer on
each problem before returning their resulting routes
to the adaptive memory. Conversely, when a de-
crease is observed, the C value also decreases.

4. COMPUTATIONAL EXPERIMENTS

TO TEST OUR algorithm, a discrete-time simulator
was developed. The simulator uses data taken from
Solomon’s 100-customer Euclidean problems (So-
LOMON, 1987) to produce new service requests. In
these problems, the customer locations are distrib-
uted within a [0, 100]* square and the travel times
are equivalent to the corresponding Euclidean dis-
tances. Six different sets of problems are defined,
namely C1, C2, R1, R2, RC1, and RC2. The custom-
ers are uniformly distributed in the problems of type
R, clustered in groups in the problems of type C and
mixed in the problems of type RC. Problems of type
1 have a narrow time window at the central depot so
that only a few customers can be serviced on each
route; conversely, problems of type 2 have a wider
time window at the depot. Finally, a fixed service
time for loading or unloading the goods is found at
each customer location. This service time is set at 10
time units per customer for the problems of type R
and RC, and 90 time units per customer for the
problems of type C.

The time horizon for the simulation is adjusted to
create two different types of scenarios: scenarios of
type 1, with approximately three requests per
minute on average, and scenarios of type 2, with
approximately one request per minute on average.
Accordingly, data relating to time in Solomon’s file,
like the lower and upper bounds of the time windows
and the travel times, are multiplied by the scaling
factor

£
ly—eg’

where T is the time horizon for the simulation. Us-
ing minutes as time units for time-related data in

TABLE I
Parameter Settings

initialization
number of initial solutions: I = max{4, P}, where P is the
number of tabu search processes
adaptive memory
size: M = 30 solutions
decomposition/reconstruction
minimum number of cycles: C = 6
tabu search
number of iterations:
A X [1 + (DR - 1)/B],
where DR is the current decomposition/reconstruction
cycle, DR = 1, ..., C. For scenarios of type 1, A = 30 and
B = 3; for scenarios of type 2, A = 60 and B = 6.
neighborhood:
maximum length of route segments: L. = 6

Solomon’s files, 7' is set to 15 minutes in scenarios of
type 1 and to 60 minutes in scenarios of type 2.

The set of requests is divided into two subsets
(each one with half of the requests). The first subset
contains requests that are known at the start of the
day, like those received at the end of the previous
day for next-day service. They are randomly selected
among the entire set of requests with a bias in favor
of requests with early time windows. Initial routes
servicing those requests are constructed in a static
fashion, using the tabu search heuristic presented in
Section 2. The second subset contains requests that
are received in real time. In this case, a time of
occurrence is associated with each request. For re-
quest 7, this value is randomly generated in the
interval [0, e;], where

e, = Iy — e; min{e;, t; 1}.
Note that ¢, ; is the departure time from i’s prede-
cessor in the best solution for the static problem that
we know of (see TAILLARD et al., (1997) for a list of
those best solutions). Thus, the best solution can
still be produced in the dynamic setting. However,
this is unlikely because the solution procedure does
not have any knowledge of future incoming requests
when it commits to a particular assignment.

4.1 Numerical Results

The experiments reported in this section were per-
formed on a network of 17 SUN UltraSparc work-
stations (143 MHz). Each process was programmed
in C++ and communication between the processes
was handled by the Parallel Virtual Machine soft-
ware. In these experiments, Eq. 1 in Section 1 is to
be minimized, with «; = « = 1 for every customer.
The algorithm’s parameter settings are shown in
Table 1.
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TABLE II

Comparison of Different Heuristics on Scenarios of Type 1

Insertion

Rebuild Adaptive * Adaptive
(No. of Problems) Insertion #* Rebuild + Descent Tabu
R1 (12) 1389.0* 1212.9 1292.0 1264.1 1234.0 1212.4
262.1 90.5 120.9 89.2 56.7 43.1
4.42 119 1.08 0.75 0.58 0.17
C1(9) 1559.6 883.9 893.0 8714 837.2 836.3
711.3 9.9 31.7 1.6 0.0 0.0
0.00 0.00 0.00 0.00 0.00 0.00
RC1 (8) 1561.6 1376.7 1449.4 1418.4 1367.6 1333.7
354.9 88.5 105.3 87.8 68.9 68.5
5.13 1.38 0.75 1.38 0.38 0.38
R2 (11) 1203.1 1069.8 1208.4 1145.9 1020.9 1024.7
546.4 66.8 447.7 391.7 96.7 50.7
1.18 0.54 1.09 0.54 0.36 0.00
C2 (8) 935.0 650.3 689.6 644.9 596.4 597.3
484.2 0.0 97.0 2.9 0.0 0.0
1.00 0.13 0.00 0.00 0.00 0.00
RC2 (8) 1461.0 1253.8 1358.1 1356.2 1189.8 1174.9
612.9 58.9 166.1 108.7 29.1 12.1
0.00 0.00 0.00 0.00 0.00 0.00
Overall 1349.9 1080.8 1157.3 1124.5 1050.1 1039.2
485.2 55.2 171.6 124.8 45.1 30.7
2.05 0.57 0.57 0.46 0.25 0.09
| *Average distance, lateness, and number of unserviced customers.
|
!
|
| TABLE III
Comparison of Different Heuristics on Scenarios of Type 2
Problem Set Insertion - Rebuild’ Adaptive Adal;a\;
(No. of Problems) Insertion + Rebuild + Descent Tabu
R1 (12) 1389.0% 1212.9 1292.0 1278.6 1198.3 1204.4
262.1 90.5 120.9 85.4 46.4 40.9
4.42 1457 1.08 0.75 0.33 0.17
C1(9 1559.6 883.9 891.9 862.7 833.6 830.9
711.3 9.9 23.2 1.0 0.0 0.0
0.00 0.00 0.00 0.00 0.00 0.00
RC1 (8) 1561.6 1371.3 1441.6 1401.9 1328.9 1337.8
354.9 88.5 118.2 75.8 50.6 52.7
5.13 1.38 1.38 1.38 0.38 0.13
R2 (11) 1203.1 1069.8 1171.8 1134.3 1034.8 1011.7
546.4 66.8 249.1 275.6 12.6 10.7
1.18 0.54 0.54 0.54 0.45 0.00
C2 (8) 935.0 650.3 673.3 641.7 597.3 595.9
484.2 0.0 10.8 4.1 0.0 0.0
1.00 0.13 0.00 0.00 0.00 0.00
RC2 (8) 1461.0 1253.8 1388.3 1329.8 1185.6 1154.9
612.9 58.9 101.0 79.5 29.1 20.9
0.00 0.00 0.00 0.00 0.00 0.00
Overall 1349.9 1080.0 1150.8 11174 1038.6 1031.6
485.2 55.2 111.4 95.4 23.8 214
2.05 0.57 0.54

*Average distance, lateness, and number of unserviced customers.
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Tables II and III compare our algorithm with
other heuristic approaches for handling new cus-
tomer requests. In each case, the fleet size was set to
the minimum number of vehicles reported in the
literature for each problem. The first four heuristic
methods maintain a single solution. The Insertion
method simply inserts a new customer at the loca-
tion that minimizes the additional cost over the cur-
rent set of planned routes. The Insertion+ method
applies a local search heuristic based on CROSS
exchanges to improve the planned routes after each
insertion. The Rebuild method reconstructs the
planned routes each time a new service request oc-
curs, using an adaptation of Solomon’s I1 insertion
heuristic (SOLOMON, 1987). Rebuild+ applies a local
search heuristic based on CROSS exchanges to the
solution obtained with Rebuild.

The Adaptive descent method is a slight modifica-
tion to our parallel tabu search heuristic. In this
case, the Tabu processes are stopped as soon as a
local optimum is found. This method thus corre-
sponds to a multi-start local search heuristic, based
on starting solutions constructed from the adaptive
memory. The last method, Adaptive tabu, is our
parallel tabu search heuristic. The results shown in
Tables IT and III for Adaptive descent and Adaptive
tabu were obtained with R = 8, D = 2, and P = 16
on the problems of type 1. That is, eight search
threads were running in parallel, with each solution
or set of routes being divided into two subsets of
routes through the decomposition procedure, for a
total of 16 tabu search processes. For the problems
of type 2, R = 16, D = 1, and P = 16. Thus, no
decomposition took place on these problems because
each solution only contains a few routes (typically,
two to four routes).

The three numbers in each entry of Tables II and
IIT are the distance traveled, total lateness at cus-
tomer locations (scaled back to the original value)
and number of unserviced customers, respectively,
for each problem set. The numbers are averages
taken over all problems in a given set, except for the
row, Overall, which contains averages taken over
the entire set of 56 test problems.

Tables II and III show that running adaptive-
memory-based heuristics to optimize the planned
routes between two events is beneficial. In particu-
lar, a larger number of requests can now be serviced,
thus increasing the overall throughput of the sys-
tem. The methods Adaptive descent and Adaptive
tabu generally perform better on scenarios of type 2,
where the request arrival rate is lower (as compared
with scenarios of type 1). Given that these methods
run during the entire time interval between two
events, they can produce better solutions when more

TABLE IV
Static Versus Dynamic Solutions
Dynamic
Scenario 1 - Scenario 2 Static
R1 1212.4* 1204.4 1209.4
43.1 40.9 0.0
0.17 07 0.00
C1 836.3 830.9 828.4
0.0 0.0 0.0
0.00 0.00 0.00
RC1 1333.7 1337.8 1389.2
68.5 52.7 0.0
0.38 0.13 0.00
R2 1024.7 10117 980.3
50.7 10.7 0.0
0.00 0.00 0.00
C2 597.3 595.9 589.9
0.0 0.0 0.0
0.00 0.00 0.00
RC2 1174.9 1154.9 1117.4
1241 20.9 0.0
0.00 0.00 0.00
Overall 1039.2 1031.6 1027.2
30.7 21.4 0.0

0.09 0.05 0.00

*Average distance, lateness, and number of unserviced cus-
tomers.

computation time is available. There is little or no
difference between scenarios of type 1 and 2 for the
other heuristic approaches. These heuristics are
quite fast, but cannot exploit any additional time
once they have produced a solution (i.e., they stop
and wait for the next event).

Table IV compares the solutions reported in TAIL-
LARD et al. (1997) in the static case, using the tabu
search heuristic presented in Section 2, with those
produced in the dynamic settings. As in Tables II
and III, the three numbers in each entry are the
average distance traveled, total lateness at cus-
tomer locations, and number of unserviced custom-
ers, respectively. Note that the static solutions ser-
vice every customer before their time window’s
upper bound, as opposed to the dynamic ones, where
some customers are unserviced or serviced late. As
expected, the sum of distance and lateness is higher
in the dynamic case. The average gap between the
dynamic and static solutions is equal to 4.1% for
scenarios of type 1 (higher request arrival rate) and
2.5% for scenarios of type 2.

4.2 Benefits of Parallelization

Through parallelization, the computational effort
can be increased between two events. Table V shows
results obtained with Adaptive tabu using P = 1, 2,
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TABLE V

Adaptive Tabu with an Increasing Number of Processors Using Scenarios of Type 1

No. of Processors

Problem §
Set i, 2 4 8 16
R1 1210:8* 1215.2 1211.4 1197.9 1212.4
51.7 35.8 45.5 42.3 43.1
0.58 0.58 0.50 0.25 0.17
C1 857.2 849.2 843.2 831.0 836.3
1 0.0 0.0 0.0 0.0
0.00 0.00 0.00 0.00 0.00
RC1 1360.3 1345.9 1348.4 1337.4 1333.7
65.9 61.5 56.1 60.6 68.5
0.50 0.38 0.38 0.38 0.38
R2 1050.4 1063.9 1041.3 1014.9 1024.7
40.4 30.6 25.5 51.2 50.7
0.45 0.45 0.36 0.00 0.00
Cc2 628.7 612.5 616.3 609.1 597.3
0.0 0.0 0.0 0.0 0.0
0.00 0.00 0.00 0.00 0.00
RC2 1192.6 1206.7 1191.6 1187.8 1174.9
43.4 23.8 36.3 19.3 12.1
0.00 0.00 0.00 0.00 0.00
Overall 1058.0 1058.0 1050.5 1037.4 1039.2
34.8 25.9 28.0 30.5 30.7
0.29 0.27

*Average distance, lateness and number of unserviced customers.

4, 8, and 16 processors to run the tabu search (using
scenarios of type 1 with a higher request arrival
rate). The three numbers in each entry are the same
as in Table IV. As expected, these numbers show
that an increase in the number of processors gener-
ally lead to better solutions, by allowing more cus-
tomers to be serviced and by reducing the sum of
distance and lateness. These numbers also show
that a request arrival rate of three requests per
minute can be handled with only P = 8 processors,
because there is not much difference between P = 8
and P = 16. 9

5. CONCLUSION

A TABU SEARCH heuristic, initially designed for
static vehicle routing problems with time windows,
has been adapted to the dynamic case. Computa-
tional results show that the tabu search heuristic
allows more customers to be serviced and reduces
the total distance traveled and total lateness at cus-
tomer locations, when compared with other heuris-
tic approaches. The current system can be improved
or extended in a number of ways:

1. Diverting a vehicle away from its current desti-
nation could be considered when a new service
request is received in the vicinity of its current

0.23 0.11 0.09

position. Allowing diversion is an interesting av-
enue to explore, although some issues must be
carefully addressed: in what situations should
diversion be allowed? should we consider the pos-
sibility of diverting away many vehicles at once?
how much computation time should be allowed to
the exploration of diversion opportunities, given
that diversion takes place in a context where the
time pressure is important (vehicles are moving
fast and diversion opportunities may be quickly
lost)?

. Retaining new service requests (if time permits)

could also be considered. By collecting a batch of
requests and by dispatching them all at once, the
adverse effects of dispatching requests in a se-
quential fashion could be alleviated.

The current problem-solving approach optimizes
the planned routes based on information (re-
quests) known with certainty. It would be inter-
esting to integrate probabilistic knowledge about
the future, like the time-space distribution of
future requests, to improve decision making at
the current time.

. A single source of uncertainty, namely the time—

space occurrence of new service requests, is con-
sidered in this work. Other sources of uncer-
tainty, like service delays due to congestion or
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vehicle breakdown, could be considered as well.
These additional events raise some interesting
issues, for example, how and when recourse ac-
tions should be taken to respond to them.

5. Extensions to problems where a service request
includes both a pick-up and a delivery location
represent an interesting research avenue. Appli-
cations include, for example, local express mail
delivery services, where both the pick-up and de-
livery locations are found in the same area and
are serviced by the same vehicle. These problems
are more difficult to handle, due to the prece-
dence constraint between the pick-up and the
delivery.
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