
Some efficient heuristic methods for

the flow shop sequencing problem

E. Taillard

Ecole polytechnique fédérale de Lausanne

Octobre 1988

Révision mars 1989

ORWP 88/12



Some efficient heuristic methods for

the flow shop sequencing problem

E. Taillard

Abstract

We compare in this paper the best heuristic methods known up to now to solve the

flow shop sequencing problem and we improve the complexity of the best one. Next, we

apply to this problem taboo search, a new technique to solve combinatorial optimization

problems, and we report computational experiments. Finally a parallel taboo search

algorithm is presented and experimental results show that this heuristics allows very good

speed-up.

Keywords: Flow shop, taboo search techniques, parallel algorithm, combinatorial

optimization.
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1. Introduction

First, we try to answer the question: "What is the problem ?". Although many

researchers have been working on the flow shop sequencing problem for many years, we

found nowhere any results about the distribution of the objective function and the

distribution of the optima of this function. In effect, such an approach gives an intuitive idea

about the problem and is important to allow the reader to judge the quality of heuristic

methods used for this problem.

Then we compare the classical heuristics and improve the complexity of the best

one. But this one does not give very good solutions on average (less than one or two percent

above the optimal solution). So we propose a heuristics improving the mean quality of

solutions when running longer, based on taboo search technique. As this technique has been

recently developed, we do not only give the best implementation we found, but some

variants of this method too.

Finally, we propose two parallel versions of taboo search, in order to reduce the

unavoidable expansive calculation times needed by this method.

2. The flow shop sequencing problem

The flow shop sequencing problem is a production planning problem: n jobs (items,

tasks...) have to be processed in the same sequence on m machines; the processing time of
job i on machine j is given by tij (i = 1...n, j = 1...m). These times are fixed, non negative and

some of them may be zero if some job is not processed on a machine.

The problem consists of minimizing the time between the beginning of the

execution of the first job on the first machine and the completion of the execution of the last

job on the last machine; this time is called makespan. For this problem the following

assumptions are made:

- Every job has to be processed at most once on machine 1, 2...m (in this order).

- Every machine processes only one job at a time.

- Every job is processed at most on one machine at a time.

- The operations are not preemptable.
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- The set-up times of the operations are included in the processing time and do not

depend on the sequence.

- The operating sequences of the jobs are the same on every machine and the

common sequence has to be determined.

This problem is NP-hard and can be solved exactly only for small sizes [2]. It

consists of finding a sequence σ that minimizes the makespan M(σ). So the number of

possible schedules is n!

Some observations on small problems

First we give in fig. 1 the distribution of all the possible makespans obtained by

complete enumeration of 500 problems with 9 jobs and 10 machines. This distribution is

given relatively to the optimal solution. The processing times were randomly uniformly

generated (integers between 1 and 100). We choose this problem size because it is possible

to calculate M(σ) for every solution σ in a reasonable calculation time.
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Fig. 1 Empirical distribution of the makespans
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We can observe that the distribution is not symmetrical. Less than 0.02% of the
M(σ) are between M(σopt) and 1.01.M(σopt) (where σopt is an optimal schedule). So finding a

solution at 1% above the optimal one is generally very hard, but a random solution is in

mean only at 20% above the optimum. Then we give in fig. 2 the distribution of the optimal
makespans M(σopt) for these problems.
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Fig. 2. Distribution of the optimal makespans

This distribution seems to be almost symmetrical and its range (for these 500

problems) is contained in an interval of 20% around the mean. The mean value of the

makespan is 1016.1 and the value of the standard deviation is 62.1. A χ2 test does neither

confirm nor refute that this distribution is gaussian. So, speaking of the mean makespan

given by a heuristics seems to be a meaningful measure.
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3. Comparison of classical heuristics

Many heuristics have been proposed to solve the flow shop problem; we compare

in table 1 the quality of the solutions and the complexity of some of them. One can find the

descriptions of these methods in [1] for Gupta, Johnson, Palmer and CDS (algorithm of

Campbell, Dudek and Smith), in [3] for RA (rapid access procedure) and in [8] for NEH

(algorithm of Nawaz, Enscore and Ham).

Complexity Quality

Problems - 500(*) 100 100 100 50 50

Jobs n 9 10 20 20 40 50

Machines m 10 10 10 20 10 10

Gupta      nlog(n) + nm 13.4 12.8 19.6 18.8 18.9 17.1

Johnson     nlog(n) + nm 10.9 11.8 16.7 16.8 17.3 16.3

RA           nlog(n) + nm 8.5 9.1 12.5 13.4 13.5 11.2

Palmer         nlog(n) + nm 8.3 9.0 13.3 12.5 10.9 10.7

CDS        nm2 + mnlog(n) 4.5 5.2 9.7 8.6 9.9 9.3

NEH         n2m 2.1 2.2 3.9 3.8 2.6 2.1

Table 1: Comparison of the classical heuristics

The complexity includes the computation of the makespan. The quality of the

solutions is given in percent above the mean of the optima (*) or of the makespan obtained

after 1000 iterations of taboo heuristics.

NEH appears to be the best polynomial heuristics in practice. The heuristics RA or

Palmer may also be useful when short computation times are required. Other results about

these heuristics are discussed in [9]. Note that the new method described below [7] permitted

us to reduce the complexity of the NEH algorithm from O(n3m) to O(n2m).

Naturally, descent algorithms may be applied to the solutions given by these

heuristics, but one cannot give the complexity anymore and the improvements are small: for

NEH, the mean improvement of solutions is less than 1% and the calculation time becomes

as important as NEH’s for the other heuristics.
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4. An improvement of NEH heuristics

We will first recall the NEH algorithm:

1) Order the n jobs by decreasing sums of processing times on the machines.

2) Take the first two jobs and schedule them in order to minimize the partial

makespan as if there were only these two jobs.

3) For k=3 to n do

4) Insert the kth job at the place, among the k possible ones, which

minimizes the partial makespan.

The complexity of step 1) is O(nlog(n)); that of step 2) is O(m). In order to calculate

one partial makespan in step 4) one needs O(km) operations. However, it is possible to

calculate the k makespans of this step in O(km):

Algorithm (to find Mi, the makespan after insertion of job k at the ith place)

1) Compute the earliest completion time eij of the ith job on the jth machine; the

starting time of the first job on the first machine is 0 (see fig. 3a).
e0j = 0, ei0 = 0 eij = max(ei,j-1,ei-1,j) + tij (i = 1...k-1) (j = 1...m)

2) Compute the tail qij, i.e.the duration between the starting time of the ith job on

the jth machine and the end of the operations (fig. 3b)

qkj = 0, qi,m+1 = 0 qij = max(qi,j+1,qi+1,j) + tij (i = k-1...1) (j = m...1)

3) Compute the earliest relative completion time fij on the jth machine of job k

inserted at the ith position (fig. 3c)

fi0 = 0 fij = max(fi,j-1,ei-1,j) + tkj (i = 1...k) (j = 1...m)

4) The value of the partial makespan Mi when adding job k at the ith position is:

Mi = maxj(fij + qij) (i = 1...k) (j = 1...m)

All these steps can be executed in time O(km). Consequently, step 4) of NEH

algorithm has a complexity of O(km). We conclude that NEH algorithm runs in time

O(n2m).
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Fig. 3 Illustration of the algorithm: insertion of job 5 at the third place.

5. Taboo search techniques

Let us briefly describe taboo search techniques, before presenting how they can be

applied to the flow shop problem; this technique is exposed in [4]. An application to the flow

shop problem is proposed in [9].

Taboo search may be useful to find a good, or possibly optimal solution of

problems which are of the type:

Min c(x)
s.t. x ∈  X

Where c(x) is any function of a discrete variable x, and X is the set of feasible

solutions. A step of taboo search starts with the current feasible solution x ∈  X to which is

applied a function m ∈   M(x) that transforms x into x’, a new feasible solution (x’ = m(x)).

This transformation is called a move, and {x’: x’ = m(x); x, x’ ∈  X; m ∈  M(x)} is called the

neighbourhood of x.

In order to avoid as much as possible cycling, an element t is associated with m and

x; this element defines a set of moves that are taboo (forbidden) now; it is stored in a set T

called taboo list. In particular t forbids to apply m’ to x’ which would transform x’ back to x;

but t may forbid other moves too. The elements of T define all taboo moves that cannot be

applied to the current solution; in practice, the size of T cannot increase indefinitely and has

to be bounded by a parameter s, called taboo list size. If |T| = s, before adding t to T, one

must remove an element, generally the oldest one.

An application of taboo search is characterized by:

1) The set M(x) of moves applicable to a feasible solution x (neighbourhood).

2) The type of the elements of the set T which define the taboo moves (taboo

list).

3) The size s of the set T (taboo list size).

4) A stopping condition.
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The generic procedure of taboo search techniques is:

0) Start with any feasible solution x0, an empty taboo list T. Let x* = x0,

c* = c(x0) and k = 0. (x* is the best solution found up to now and c* the value

of the objective function for this solution)
1) In M(xk) choose m, a move transforming xk that minimizes c(m(xk)) and that

is not forbidden by the elements of T. The move can be chosen by complete or

partial examination of M(xk). Let xk+1 = m(xk).

2) If c(xk+1) < c*, let c* = c(xk+1) and x*  = xk+1.

3) If |T| = s remove the oldest element of T; add the element t defined by m and

xk+1. Increment k by 1.

4) Go back to 1) if the stopping condition (optimum reached, k larger than a

fixed limit...) is not satisfied.

Applications of taboo search techniques

The objective function of our flow shop problem is the makespan and the set of

feasible solutions is any permutation σ of {1...n}:

Min M(σ)
s.t. σ: permutations of 1...n

For this problem, the neighbourhood may be defined in several ways:

1) Exchange two adjacent jobs.

A move m is entirely defined by i. The size of the neighbourhood is |M(σ)| = n-1.

Our experiments show that these moves are bad, both for quality of schedules

and global calculation time.

2) Exchange the jobs placed at the ith and the kth position.

A move m is entirely defined by i and k. The size of the neighbourhood is Erreur!

. The evaluation of all the makespans σ’, neighbour of σ , can be executed in

time O(n3m). [9] proposes this kind of neighbourhood. Our experiments show

that such a neighbourhood is not better than the next one to find good

schedules with taboo search techniques; furthermore, the complexity of each

single step is higher.
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3) Remove the job placed at the ith position and put it at the kth position.

A move m is entirely defined by i and k. The size |M(σ)| of this neighbourhood is

(n-1)2. The evaluation of all the makespans can be executed in time O(n2m),

using the insertion algorithm described in the NEH heuristics. We choose this

type of neighbourhood because of the efficiency of the moves, both for quality

and computation times.

Next we have to define how to examine the neighbourhood before choosing a move

leading to the next step:

a) Examine the neighbours and take the first which improves the current

solution. If there is no move that improves the solution (or if all improving

moves are taboo) then one has to examine the whole neighbourhood. For this

method, the mean calculation time of a step is less than the one needed for

method c). But this time is not constant, and the steps are not as good. [9]

proposes this examination.

b) Examine a fixed number of moves that are not taboo, randomly generated.

This method is useful for problems for which the size of the neighbourhood is

very large: but our experiments have shown that it does not suit for middle-

size flow shop problems.

c) Examine the entire neighbourhood and take the best move that is not taboo.

This method needs more (but constant) calculation time for each step than

partial enumeration, but the moves are better. If one wants to examine the

neighbourhood in parallel, this method allows to balance very well the work

between the processors.

The taboo list may also be of several types:

i) Prevent a job from returning to a fixed place before one has made s steps (s:

length of the taboo list). In this case, s is a sensitive parameter; [9] proposes to

fix it at the value of 7.
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ii) Prevent the new makespan from coming back to a makespan that was already

obtained in the s previous steps. If s varies in an acyclic way (by example if s

simply grows) then cycling is well prevented.

These two taboo lists are good but the last one avoids the use of another parameter

called aspiration level (i.e. a taboo move is allowed if it improves the objective function of

more than a value, the aspiration level, which has to be defined and depends on m and σ).

We have chosen the latter type of taboo list.

Performances of taboo search

In order to evaluate the performances of taboo search, we have first randomly

generated 200 flow shop problems of 9 jobs and 10 machines, for which the optimal

makespan was known. Then we have solved these problems 100 times with taboo search,

starting from various initial solutions. We have done the same with 8 problems given by [2]

of various sizes (11 jobs x 5 machines, 13x4, 12x5, 14x4, 10x6, 8x9, 7x7 and 8x8). We can

make the following remarks:

1) There are a few problems that are very easy to solve (always less than 15

iterations) and a few ones that are much more difficult (sometimes more than

800 iterations).

2) For a fixed problem, the number of iterations (steps or moves) can be very

variable. (From 10 to 800 iterations, depending on the starting point)

In fig. 4 we give the empirical distribution of the CPU time required by a resolution

on a Vax 8600. This distribution is tabulated for two types of neighbourhood examination.
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Fig. 4: CPU time to find the optimal makespan (9 Jobs, 10 Machines)

1) Best move: all the neighbours are evaluated and the best

becomes the next current solution.

2) First move improving the current solution: the

examination of the neighbours is stopped when a non

taboo move leads to a better solution than the current

one.

The second rule of examination is slightly better than the first one. The mean

resolution time is 546 ms. for the first one versus 675 ms. for the second one but the mean

number of iterations is higher: 29 versus 24. However, these measures may be meaningless,

because of the extent between the extremities of the distribution’s curve.

However, for practical problems, one cannot know, and even characterize the

optimal makespan; so determining a good stopping condition of taboo search is not trivial.

We have tried three stopping conditions:
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1) Stop if the number of iterations is greater than k, an a priori fixed constant.

The taboo search completes in time O(kn2m) with this stopping condition. In

fig. 5 and 6, the evolution of the mean makespan is plotted as a function of the

number of steps of taboo search. There were 100 problems of the following

size: 10 jobs x 10 machines, 20x5, 20x10 and 20x20 , and 50 problems of

30x10, 40x10 and 50x10. All these problems were randomly generated, the

processing times of the jobs on the machines being uniformly distributed

integers between 1 and 100. The taboo list size was growing from 7 (for the

first iterations) to 100 (for the last ones).
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Fig. 5 Evolution of the makespan: 10 Machines
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Fig. 6 Evolution of the makespan: 20 jobs

The curve of the evolution of the makespan may be interpreted as follows: for

the first iterations (< n), taboo search is the same as an improving heuristics

which goes into a local minimum. Then taboo search goes from a local minimum

to another one and the improvements become less and less frequent (in an over

exponential way).
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2) Stop if the number of iterations without improving the best solution is greater

than a constant a priori fixed. We compare in fig. 7 the evolution of the

makespan as a function of the total number of iterations (stopping condition 1)

and this evolution, function of the number of iterations without improving the

best solution. We can see that this second stopping condition provides a more

regular progression of the mean makespan. In fact this curve is more or less

the same than the first one but without the preliminary way down to a local

minimum; it is important to mention that both evolutions of makespan,

function of CPU time provide the same curve whichever stopping condition is

chosen. The duration of taboo search, for this second stopping condition

depends on the problem and on the initial solution.
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Fig. 7 Stopping condition: evolution of the makespan (20 Jobs, 10 Machines)

3) We have seen that the number of iterations needed to find the optimal solution

of the flow shop problem (and other ones too, see [6]) depends strongly on the

initial solution; what is more, one continues working even if one has the

optimal solution, because one cannot characterize it. In order to reduce useless

work, the following algorithm may provide good results: Let p be a fixed
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number of processes; each of them executes independently a taboo search with

a different initial solution. After a while (which has to be defined), the

processes have to be stopped and their respective best solutions compared. If

two or more of them are the best of all, then the algorithm ends; otherwise, the

processes continue their taboo searches from where they are and so on. Some

simulations (200 problems, 10 jobs x 10 machines and p = 4 processes) of this

algorithm on a sequential machine show us that the mean of the total CPU

time is more or less the same as with the previous algorithm, with stopping

condition 2). The longer the time between comparisons is, the better the

solutions are. For this algorithm, the solutions (schedules) may not be the

same, even if the makespans are equal. This algorithm may not end (because

of cycling), consequently another stopping condition has to be added, for

example: stop if the number of comparisons without improving the best

makespan is greater than a constant.

6. Parallelization of taboo search

The third stopping condition leads to a trivial parallelization; it is well adapted for

small numbers of processes (typically from 3 to 6) but there is a limit to the speed-up due to

the way down to the first local minimum; and at this limit, the algorithm becomes a simple

improving heuristics which needs no taboo list at all!

Another approach of parallelization is the following: we have remarked that the

time needed to evaluate the value of the makespans of the neighbourhood is almost the entire

calculation time; in order to speed up the algorithm, one has to reduce this calculation time.

This may be realized by parallelizing the search of the best neighbour: each processor

inspects only a fraction of the neighbourhood. Then, the best allowed moves are compared

and the best of all is chosen (see fig. 8). In order to do a step of taboo search, the algorithm

then becomes (for processes without common memory):

(Assume that the master process has a current move and that each slave

process has the same current solution, taboo list, and so on, but a different subset of

neighbours to examine)

Master process:
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M.1) Send to every slave process the current move.

M.2) Wait the best moves of each slave process and choose among them the

best of all. Go back to M.1) unless a stopping condition is satisfied.

Slave process:

S.1) Wait for a move, given by the master process, perform it and update the

taboo list.

S.2) Try all the moves among the partial neighbourhood; choose the best

non taboo one and send it to the master process. Go back to S.1)

Master
Proposition of move

Move to  
perform

Slave 1

Slave 2

Slave p

...

 

 

Fig. 8 Exchanges of information between the master and the slave processes.

The work done by each slave process is very long, if it is compared to the work of

the master process, and, in practice, the master process and one slave process run on the

same processor. With this technique, we could work 1.92 and 1.99 times faster with 2

processors than with only one, for problems of 10 machines and respectively 10 and 40 jobs.

For our experiments of parallelization, we used two 32-bits transputers (one T414

and one T800 which has the same integer calculation power). In very few words, a transputer

is a microprocessor equipped with 4 bidirectional communication links, especially designed

to create multiprocessor networks with distributed memory (MIMD machines); the

synchronizations between processors are made by the messages. Readers are referred to [5]

for more details see.

Fig. 9 represents the mean evolution of the makespan as a function of CPU time for

100 problems, 10 jobs and 10 machines.



17

101.1
1.00

1.01

1.02

1.03

1.04

1.05

Vax 8600

1 Transputer

2 Transputers

CPU Time (Seconds)

R
el

at
iv

e 
m

ak
es

pa
n

Fig. 9 Evolution of the makespan function of the CPU time of several machines

This evolution is given for:

1) The sequential algorithm, run on a T414 transputer.

2) The sequential algorithm, programmed in Pascal and run on a Vax 8600.

3) The parallel algorithm, run on two transputers (T414 and T800).

It is interesting to mention that two transputers have a calculation power

comparable with a mini-computer, for well parallelizable algorithms.

7. Conclusions

In this paper, we have first presented the empirical profile of randomly generated

instances of the flow shop problem; then, we have shown that NEH was the best heuristics

among the classical ones. A new method permitted us to reduce its complexity to O(n2m).

The problem may be solved efficiently by a taboo search technique, and we can get

better solutions than NEH. The optimality of the solutions cannot be proved, but we found
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every time the optimal solution of the problems for which the exact solution was known, if

we allowed sufficient CPU time.

Such a technique is very flexible and more general flow shop problems for which

the already existing heuristics are not designed may be treated without great changes (set-up,

processing times not fixed...). However, we have remarked that flow shop problems with

ordering that can vary on each machine cannot be treated with exactly the same taboo search

technique; some refinements have to be introduced.

Unfortunately, taboo search needs great calculation times; in order to reduce them,

we have presented two methods of parallelization that can be simultaneously applied. These

methods may lead to a parallelization with O(n) processors.
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