Parallel Iterative Search Methods for

Vehicle Routing Problems

E. Taillard

Ecole Polytechnique Fédérale de Lausanne, Département de Mathématiques,

CH-1015 Lausanne, Switzerland

This paper presents two partition methods that speed up iterative search methods applied to vehicle
routing problems including a large number of vehicles. Indeed, using a simple implementation of
taboo search as an iterative search method, every best-known solution to classical problems was
found. The first partition method (based on a partition into polar regions) is appropriate for Euclidean
problems whose cities are regularly distributed around a central depot. The second partition method
is suitable for any problem and is based on the arborescence built from the shortest paths from
any city to the depot. Finally, solutions that are believed to be optimum are given for problems

generated on a grid. © 7993 by John Wiley & Sons, Inc.

1. INTRODUCTION

Vehicle routing problems (VRP) are among the (NP-
hard) combinatorial optimization problems for which
exact and heuristic methods have most evolved these
last years. This is certainly due to the increase in the
demand by transportation companies for methods to
address this important problem area.

On the other hand, iterative local search techniques
for combinatorial optimization have been more and
more used for solving practical problems. Indeed, these
techniques lead to methods that are well adapted for
relatively small VRP (less than 150 cities): They are
able to find very good solutions in a few seconds; with
a few minutes of computation, they generally find solu-
tions that are better than most of the other heuristic
methods. For example, Gendreau et al. [6] showed
that their adaptation of taboo search provides better
solutions than do more than a dozen previously pro-
posed methods. The aim of this paper was precisely
to show that it is possible to adapt such iterative search
methods for the treatment of larger problems.

The basic problem that we have studied is the follow-
ing: Identical vehicles (the number of which is unde-

NETWORKS, Vol. 23 (1993) 661-673
© 1993 by John Wiley & Sons, Inc.

fined), having a fixed carrying capacity Q, have to de-
liver order quantities ¢; (= 1 ... n) of goods to n
cities from a single depot. Knowing the distance d;;
between cities i and j (i, j = 0 ... n, city 0 is the
depot), the problem is to find tours for the vehicles in
such a way that

e The total distance traveled by the vehicles is mini-
mized (a tour starts from the depot and ends at the
depot).

e Every city receives its delivery by a unique vehicle.

e The total quantity of goods that a single vehicle deliv-
ers cannot be bigger than Q.

We will also consider a variant of this problem for
which the delivery at each city requires a service time
and for which the time needed to perform any tour is
limited by a value L; in this case, the distance d;; is
interpreted as a time.

Iterative search methods are generally easy to imple-
ment and they often produce very good solutions to
the VRP. Moreover, they may easily be adapted to
practical problems dealing with a large number of con-
straints (see, e.g., [16]). Among these iterative search

CCC 0028-3045/93/080661-13
661

662 TAILLARD

methods, the taboo search (TS) techniques provide
very good solutions, if independent adaptations due to
[6] and [14] are considered. It seems likely that TS
might find optimum solutions of small problems
(50-100 cities). However, for larger problems, these
adaptations are less and less efficient.

In this paper, we are interested in methods that are
able to produce solutions of very high quality. It is
shown in [6] that of other approaches to the VRP [1,
3, 4, 7, 13] the two-phase and the incomplete tree
search algorithms of [2, 5,9, 15, 19, 21] are not competi-
tive with respect to the quality criterion: None of them
has produced solutions less than 2% above the best-
known solution, on average, for the set of 14 problems
proposed by [2]. Some of these methods produce solu-
tions more than 10% above the best-known solution, on
average, and in some instances, the solutions produced
may be nearly 30% (!) above the best-known solution.

This paper presents first a simple adaptation of TS
to VRP in Section 2. Then, in Section 3, decomposition
methods based on the coordinates of the cities are pre-
sented. These decompositions provide very good re-
sults for problems for which the cities are more or less
uniformly distributed around a central depot. When
the cities are very irregularly distributed, or when the
distances between cities are not Euclidean, it is neces-
sary to decompose the problem in another way. Such
decomposition methods are presented in Section 4. The
last section concludes with improvements that might
be made to our methods.

2. ITERATIVE SEARCH FOR VRP

In a general way, an iterative search may be sketched
as follows:

(a) Choose an initial solution of the problem s,. Set
k=0.
(b) Whereas a stopping criterion is not met, repeat the
following step:
(c) Choose from a set N(s,) of neighbor solutions
of s, the next visited solution s, ;.
Setk =k + 1.

The choice of a policy for points (a)—(c) leads to various
iterative searches. Generally, the initial solution is cho-
sen in such a way that its generation is easy and fast.
For VRP, a separate vehicle can be assigned to each
city with each vehicle performing just the tour
depot—city—depot.

The choice of the stopping criterion is often related
to the type of iterative search chosen: A descent
method stops as soon as there is no better solution

than s, in the neighborhood N(s,); a simulated anneal-
ing (SA) process stops when the number of steps per-
formed without improving the best solution found up
to now is greater than a threshold (this threshold is
modified during the search, according to other parame-
ters such as the temperature); TS stops when the num-
ber k of iterations performed is greater than a threshold
(this threshold may vary during the search). Naturally,
the stopping criteria listed here are not exhaustive and
some authors have adopted more subtle criteria.

A very general neighborhood for the VRP is consti-
tuted by the following type of move: Having chosen
two different tours A and B, every possible exchange
of u cities of tour A and = cities of tour B is tried [with
0 < p < min(M, |A]), 0 = 7 < min(P, |B|), where
M and P are nonnegative integers]. We shall use the
notation (M, P) to represent this type of move. The
number of possible exchanges grows very fast with M
and P, so iterative search methods use very small val-
ues of M and P, e.g., (1, 0) or (1, 1), that correspond,
respectively, to the move of a city from tour A into
tour B and to the exchange of two cities between tours
A and B.

Osman [14] used a neighborhood of type (2, 2) for
a descent method and a neighborhood of type (1, 1)
for TS and SA. He concluded that TS is superior for
such neighborhoods. Gendreau et al. [6] and Semet
and Taillard [16] used a neighborhood of type (1, 0) for
their implementations of TS. However, we suspect that
better neighborhoods might exist, e.g., those of type
(M, P) with M, P = 2 restricted to the exchange of
consecutive cities on the tour.

As all the best-known solutions of a set of 14 prob-
lems proposed in [2] were found using TS [6], we
choose to solve by this technique the subproblems that
result from the decomposition of large problems. We
shall briefly present the simple implementation of TS
that we have designed for the VRP (for additional fea-
tures on TS, as applied in a variety of combinatorial
optimization settings, the reader may refer to [8]).

The initial solution that we chose is to use a separate
vehicle for each city. The neighborhood type is (1, 1)
with restriction to feasible solutions (i.e., two succes-
sive solutions are feasible and differ only by the ex-
change of two cities not belonging to the same tour or
by the move of a city from one tour to another). The
basic idea of TS is to choose for s, the best solution
belonging to N(s,). However, to avoid cyclically vis-
iting the same solutions, the reverse of a move that
has been performed is forbidden during a number ¢ of
iterations: If at iteration k city c,, belonging to tour
A, and city c,, belonging to tour B, are exchanged
(respectively, if city ¢ is moved from tour A to tour
B), it is forbidden to put both ¢, in A and ¢, in B
(respectively: to put ¢ in A) again during iterations

k + 1to k + ¢, unless this move leads to a solution
better than the best found by the search so far. This
type of taboo restriction was also chosen by [14].

If TS is implemented only with this taboo list, it
turns out that the cities that are near to the depot are
much more frequently moved than are the others. This
is due to the TS process that chooses the best-allowed
neighbor at each step. To diversify the search, we
penalize the moves that are frequently performed: A
move m that is performed with a frequency f,, is penal-
ized by a value W - f,,, unless it improves the best solu-
tion found so far (W is a parameter whose best value
depends upon the particular VRP). Such a diversifica-
tion technique was successfully applied to other prob-
lems; see, e.g., to scheduling [18].

The values of the parameters ¢t and W have to be
adjusted so that the search produces good solutions.
We randomly chose, uniformly between 0.4n and 0.6n,
the value of the parameter ¢. Let Aj®* be the maximal
absolute value of a feasible move tried up to iteration
k (i.e., AT = max;q sene) |f(s) — f(s)]), and v, the
number of vehicles used in the best solution found up
to iteration k; W (for iteration k) is randomly chosen,
uniformly between 0.1:-AF* Vn-v and 0.5-AP*
Vn - v. Intuitively, this formula is justified as follows:
The penalty should be proportional to the value of the
moves (this explains the factor AP**); since the number
of moves increases with the size of the problem, it
follows that the frequency at which each move is per-
formed decreases as the size of the problem grows.
The factor Vv normalizes the decrease of the fre-
quencies. We have observed that factors between 0.1
and 0.5 provide good results, whatever the problem
type and size are.

To evaluate the cost of a move, two traveling sales-
man problems have to be solved: one for each modified
tour. It is not reasonable to consider exact methods
for solving these problems at each trial move or even
at each iteration for the current solution because they
are too time-consuming. So, we have to use a heuristic
method for evaluating the value of moves. We have
chosen the simplest insertion heuristic method: If city
c is moved from tour A to tour B, one goes directly in
tour A from the city that was preceding c to the city
that was succeeding to c. In tour B, one inserts c at
the place that least increases the length of tour B (in
case of exchange moves, both cities are first removed
and then inserted). Gendreau et al. [6] used a more
elaborate insertion procedure, but if the tours contain
a relatively small number of cities, it turns out that the
possible lower quality of our insertion procedure is
compensated by its much faster execution. If the prob-
lem is ‘‘regular,”’ i.e., if every tour contains about
nlv cities, when n is the total number of cities and v
is the number of vehicles in a good solution, then it is

PARALLEL ITERATIVE SEARCH METHODS 663

- ’~.”~v~‘—~‘—_—~_—~--
“v’“" -

""" 3 processors

= 7 processors

0 T T T T T
0 5 10 15 20 25 30
Number of cities

T T T

35 40

Fig. 1. Efficiency of the parallelization of the insertion
method.

possible to perform one iteration of our TS in O(nv +
n? + (n3/v?): One move may be evaluated in O(n/v);
as only two tours change from one iteration to the next
one, only O(n(n/v)) moves have to be reevaluated (the
values of the remaining ones have not changed and
may be stored). Then, we have to choose the best
among O(nv + n?) moves [because there are O(n?) that
exchange two cities belonging to different tours and
O(nv) moves that put one city in another tour]. Gener-
ally, for a given type of problem, » is proportional to
n; in this case, the complexity of one step of tour TS
is O(n?). For example, for a problem involving 50 cities
and six vehicles, one iteration of our TS takes about
13 ms on a Silicon Graphics 4D/35 workstation.

The insertion method may be easily implemented
on distributed computers and interesting speed-ups
may be obtained with small sizes of problems. Figure 1
shows the speed-ups that we have obtained experimen-
tally as a function of the problem size with a network
of three or seven transputers connected in binary tree.
We see in this figure that this insertion procedure may
be parallelized efficiently.

As this simple insertion procedure does not produce
optimal tours in general, the tours may become rather
poor. Thus, every 200 iterations, or when a solution is
found at less than 0.1% above the best found so far
during the search, every tour is optimized with the
code of [20] for solving exactly traveling salesman
problems. In such conditions, for the problems consid-
ered in this paper, the time spent in the exact computa-
tion of the tours is only a small percentage of the total
CPU time and the quality of the solutions that our
algorithm produces is much higher. Using an exact
computation of the tours may be problematic if the
number of cities per tour is greater than 40 or 50; this
problem has never occurred for the problem instances
considered in this paper.

664 TAILLARD

a)

b)

Fig. 2. Partition into sectors and partition into polar regions.

3. DECOMPOSITION OF
UNIFORM PROBLEMS

By ‘‘uniform problems,’’ we mean problems for which
the depot is almost centered and for which the cities are
regularly distributed around the depot, without forming
distinct clusters. Almost all the problems proposed by
[2] are ‘‘uniform,”’ but the problem with 120 cities has
an uncentered depot and the cities are clearly forming
groups. We shall see that the partition method pro-
posed in this section works poorly (on average) for this
latter problem.

When examining good solutions to problems that
involve more than 100 cities and 10 vehicles (see, e.g.,
Fig. 5), it turns out that locality properties for iterative
searches exist: It is useless to try to move a city to
every other tour; it is sufficient to try to move this
city to some of the nearest tours. Moreover, a move
modifies only two tours. So it is possible to simultane-
ously perform another move that involves cities be-
longing to other tours. If the problem under consider-
ation has cities uniformly distributed around the depot,
a partition of the problem into sectors [see Fig. 2(a)]
is recommended. For very large problems, a partition
of the sectors themselves may be necessary. Thus, we
have a partition into polar regions [see Fig. 2(b)]. Such
partitions were proposed in [12] for a slightly different
version of the problem. In this reference, heuristic
methods using such partitions are shown to satisfy,
asymptotically, the ‘‘strongest possible optimality
property.” For the problem that we are dealing with,
there is a theoretical background justifying the decom-
position of large problems: An interpretation of the
results of [17] is that, when the number of cities tends
to infinity, problems randomly generated (under certain
assumptions) may be partitioned into subproblems so
that the value of the optimum solution of the full prob-

lem is equal, asymptotically, to the sum of the values
of the optimum solutions of the subproblems. The opti-
mum solution value of problems randomly generated
tends to a value also given in [17]. Unfortunately, this
value is of little use for the problems considered in this
paper since for some problems it is less than 50% of
the best-known solution value (and probably of the
unknown optimum solution value as well); even for a
problem with 1024 cities generated on a grid (the biggest
problem considered in this paper), the value of [17] is
still only 92% of the best-known solution value.
We adopt the following partition algorithm:

First partition of uniform problems:

Data: n cities of polar coordinates (6;, p;) [i =
1...n,depot at (0, 0)].
s : number of sectors.
¢ : number of partitions of the sectors.

(a) Renumber the cities by increasing angle 6; (from

now on, we have 6, < 6,,,,i=1...n — 1).
(b) Generate a random integer g from 1 to n in-
clusive.

(c) Assign to sector j cities
(nls)- (G — 1 + 1.5] + g) mod(n)) + 1 to
((l(n/s)-j + 0.5] + g) mod(n)) + 1.

(d) Renumber the cities assigned to every sector by
increasing radius p;; for sector j that contains n;
cities, we have now p; < p;,, (1 <i=n; — 1).

(e) Assign to region k of sector j cities
l(nj/c) -k — 1) + 1.5] to [(n/c)-k + 0.5].

If the quantities to deliver to each city are not regularly
distributed, a partition that assigns approximately the
same delivery quantity to each region might be better
than this partition that assigns approximately the same
number of cities to each region.

Each region is then treated as an independent VRP
and solved by a TS process. The solutions produced
by this method are not good because they involve a
number of vehicles that is too high. It is for this reason
that we propose to evaluate (manually) the total num-
ber of vehicles required to deliver to every city and to
distribute this number of vehicles among the regions.
Every subproblem may construct a number of tours
up to the number of vehicles assigned to this region.
If a delivery is not made to a city, a cost of nondelivery
equal to double the distance to the depot is assigned.
Now, the solutions produced are not good, mainly be-
cause there are vehicles that are underloaded and cities
that are unsatisfied. Moreover, it can be shown (see,
e.g., Fig. 5) that the best-known solution of most of
the problems proposed by [2] cannot be obtained by
partitioning these problems into two sectors having
approximately the same number of cities. To partition
the problem in another way, it is necessary, after a
summary resolution of the subproblems, to move some
cities and some tours from one subproblem to another,
while making use of the work performed up to that
point.

After a summary resolution of the subproblem asso-
ciated to each region (i.e., after having performed a
given number of iterations of TS for each subproblem),
one has a best solution that is constituted of formed
tours, unsatisfied cities, and empty vehicles. These
tours, cities, and vehicles have to be grouped in another
way, forming therefore new subproblems. We use for
this the following algorithm that is similar to the previ-
ous one but using the position of the center of gravity
of tours instead of the position of the cities:

Subsequent partition of uniform problems:

(a) Compute the center of gravity of every tour (the
cities have a weight of 1 and the depot a weight
of 0).

(b) Sort the undelivered cities and the tours by angle
of their center of gravity.

(c) Divide the problem into sectors, giving about the
same number of tours to each sector. The tours
are not divided and each undelivered city is attrib-
uted to the sector containing the tour for which the
angle of the center of gravity is the closest to the
angle of the city.

(d) Sort by radius of the center of gravity the undeliv-
ered cities and the tours of each sector.

(e) Divide the sectors into concentric regions in the
same way as was done for the division into sectors.

(f) Assign at random the empty vehicles among the
subproblems.

PARALLEL ITERATIVE SEARCH METHODS 665

107 s
[}
94\
- Yyl e 50 iterations before new division
=] .
E 8 \\ =500 iterations before new division
2 74
£ 6
B
2 57
B -
e 4
g 3]
®
2 -
l -
0 T T T T T 1
0 100 200 300 400 500 600

CPU time (seconds).

Fig. 3. Influence of the number of iterations performed
before new division into subproblems.

The first sector needs not be constructed systematically
by beginning the scanning with the tour or the city
having the smallest angle of center of gravity. This tour
or this city can be randomly chosen, for example. As
assigning the empty vehicles to processes randomly
seems convenient for the problems that we have con-
sidered, we have not tested other policies for point (f)
of the algorithm.

In Figure 3, we present the behavior of this algorithm
on a classical problem that involves 199 cities and was
proposed in [2]. As the number of iterations performed
at each summary resolution has to be chosen, we have
plotted in Figure 3 the evolution of the value of the
solutions as a function of the CPU time for two values
of number of iterations: 50 and 500. The problem has
been partitioned into four sectors and the parallel algo-
rithm was implemented on the same sequential work-
station as before; so the CPU time is the sum of the
time required to solve every subproblem. As good solu-
tions of this problem include 17 vehicles, it is not possi-
ble to partition this problem efficiently into more than
four subproblems.

It turns out that the algorithm finds good solutions
faster if 50 iterations are allowed for the resolution of
subproblems, but it is difficult to find very good solu-
tions during the further partitions of the problem. Con-
versely, if a large number of iterations is allowed for
the resolution of the subproblems, it takes time to get a
good solution, but the supplementary work performed
during the further partitions of the problem permits
finding much better solutions. It is why we propose to
gradually increase the number of iterations performed
by the search between two successive partitions and
to perform | 2d - (n/r)] iterations at the dth decomposi-
tion of the problem (n is the total number of cities and
r is the number of regions).

Figure 4 compares this algorithm to the automatic
algorithm proposed by [6] and runs on the same com-

666 TAILLARD

~
1

Taillard
""" Gendreau et al.

Per cent above best known solution

0 500 1000 1500 2000 2500 3000 3500 4000
CPU time (seconds on Silicon Graphics)

Fig. 4. Comparison of two TS implementations.

puter for the problem of [2] involving 199 cities. The
automatic algorithm of [6] has been communicated to
us by Hertz [10]. We have run our algorithm 12 times
with different partitions of the problem into four parts.
The other algorithm has been run with different initial
random number generator seeds only 10 times, but
this does not affect the comparison of both algorithms
because we present average values in Figure 4. We
see in this figure that our algorithm finds, after more
than 1 min, better solutions on average than does the
algorithm of [6]. It seems that the algorithm of [6] finds
solutions that are relatively good in a short time. In-
deed, for this problem and between 20 and 60 s of
computation time, it finds on average better solutions
than our algorithm. But, after 1 min, the algorithm of
[6] seems to have difficulties to improve the quality of
the solutions.

The initial partition has a great influence on the final
solution produced by our algorithm; we have not found
rules for choosing one initial partition rather than an-

" other. Toillustrate the difficulty of finding a good initial

partition, let us mention that, for this set of runs, the
run that has found the best solution was the worst in
terms of the solution produced after 2000 iterations and
the run that has found the worst solution at the end
was the best after 2000 iterations.

Table I gives the best value of solutions found by
our algorithm, as well as the best published values for
the problems proposed in [2]; the problems are listed
in Table I in the same order as in this reference. Bold
characters indicate best-known values. We see that we
have improved five of 14 best solutions (and especially
most of the largest problems were solved better) and
that identical values of solutions were found for the
remaining problems (optimum reached?). We do not
give CPU times in Table I because it is very difficult
to give them as our algorithm does not find the best-
known solution of every problem at each run. We think
that mentioning the times required for the best runs is
not honest (in most cases, these times are smaller than
the times needed to find solutions that are, on the aver-
age, 1% above the best-known solution [see Table IIJ).
The fact that our algorithm has found every best-known
solution should justify the foundations of the method.

In Table II, we give the CPU times (if available)
required by our algorithm and by the algorithm of [6]
to find solutions that are, on the average, 5, 2, and
1% above the best-known solution. To get these CPU
times, we have run both algorithms for each problem
instance 10 times or more with the same set of parame-
ters but with a different random seed. Also, we have

TABLE |. Best-solution values produced by some TS implementations

Service Parallel TS
Time/Longest Best Solution Best Solution (Partition

No. Cities Tour Limit L Value of [6] Value of [14] into Sectors)
50 0/c0 524.61 524.61 524.61
75 0/c0 835.32 838.62 835.26
100 0/c0 826.14 829.18 826.14
150 0/c0 1031.07 1044.35 1028.42
199 0/ 1311.35 1334.55 1298.79
50 10/200 555.43 555.43 555.43
75 10/160 909.68 909.68 909.68
100 10/230 865.94 866.75 865.94
150 10/200 1162.55 1164.12 1162.55
199 10/200 1404.75 1417.85 1397.94
120 0/ 1042.11 1042.11 1042.11
100 0/ 819.56 819.59 819.56
120 50/720 1545.93 1545.98 1541.14
100 90/1040 866.37 866.37 866.37

PARALLEL ITERATIVE SEARCH METHODS 667

TABLE Il. CPU time (in seconds on Silicon Graphics 4D/35) needed to find solutions that are, on average, a

specified percent above the best-known value

TS with Partition into Sectors

Implementation of [6]

No.

n Sectors 5% 2% 1% 5% 2% 1%

50 1 7 23 49 6 53 >90

75 2 3 12 53 19 >110 —_
100 2 12 68 580 <5 9 53
150 3 86 450 3800 18 >1800 —
199 4 75 510 3000 240 4600 —

50 1 2 5 17 12 21 >34

75 2 5 20 51 33 >99 —
100 2 11 120 1100 190 310 >1400
150 3 64 400 1100 550 >2800 —
199 4 100 890 — 1300 >2300 —
120 2 4600 —_ — — — —_—
100 2 81 170 340 14 32 72
120 2 70 300 3900 >2100 —_ —
100 2 82 330 1500 79 280 520

taken the mean solution values obtained after a given
time (e.g., the values given for the problem with 199
cities without longest tour length limitation can be read
in Fig. 4). A time printed in bold characters indicates
that the corresponding time for the other method is
significantly larger.

We see in Table II that our algorithm finds solutions
of given quality generally faster than does the algorithm
of [6]. However, for two problems, the algorithm of
[6] converges to very good solutions in a very short
computation time. For most of the remaining problems,
and especially for the largest ones and for those with
longest tour length limitations, the algorithm of [6]
tends to terminate before having reached a solution at
1 or 2% above the best-known solution. In this table,
we see that the iterative search that we have designed
for solving the subproblems is efficient: The problems
with 50 cities have been solved without being parti-
tioned; so our algorithm may be compared favorably
to the algorithm of [6]. We see that the problem of [2]
with 120 cities and without longest tour limitation is
solved very poorly by both methods; for our method,
this may be explained by the fact that the cities are
grouped and by the fact that the depot is not centered:
Indeed, an arbitrary decomposition of the problem into
sectors has a high probability of splitting into different
subproblems a group of cities that should be served by
the same vehicle. Moreover, if the depot is not cen-
tered, an arbitrary decomposition has a high probability
of creating one sector with a much larger angular span
than that of the others. We will see in the next section
how to partition such a class of irregular problems in
a much more efficient way. Figure 5 gives the best
solution found for the problems proposed by [2] includ-

ing (a) 120 cities with longest tour limitation, (b) 150
cities without longest tour limitation, (c) 199 cities with-
out longest tour limitation, and (d) 199 cities with
longest tour limitation; the travel from the depot to
the first city of each tour and the travel from the last
city to the depot are not drawn on this figure.

To test our algorithm on bigger problems, we have
generated problems for which we conjecture that the
optimum solutions are known. These problems involve
(2q - k)? cities having a demand of 1 each and the capac-
ity of each vehicle is 2g. The rectangular coordinates
of the citiesare (i, /)i =1...2q-k,j=1...2q-k)
and the coordinates of the depotare (q-k + 0.5,k +
0.5). For k = 1, 2, and 3 and ¢ = 2 and 3, what
we conjecture to be optimum solutions are plotted in
Figure 6; again, the travel from the depot to the first
city of each tour and the travel from the last city to the
depot are not drawn. Optimality has been conjectured
because our TS algorithm has produced this type of
solution for small values of k and we have not found
any evidence for such solutions to not be optimum.
For ¢ = 2 and ¢ = 3, we think that the optimum
solutions are of this type for any positive integer k; but
for g = 4, we know that better solutions with other
structures exist.

Table III gives, for some values of k and g, the
performances of our algorithm (in percent above the
pseudooptimum value) for problems generated on a
grid. In this table, s is the number of sectors and ¢
the number of divisions of the sectors into concentric
regions; therefore, s-c is the total number of sub-
problems. We give in this table the cumulative number
of iterations performed by TS and the corresponding
CPU times on a Silicon Graphics 4D/35 workstation.

668 TAILLARD

a) b)

A

Fig. 5. Best-known solutions of some classical problems.

The automatic algorithm of [6] is much less efficient
than ours for this type of problem: For the problem
with 64 cities, after 150 s (respectively, after 700 s),

TABLE Ill. Parallel TS efficiency for partition into polar regions

the average solution value is 2.5% (respectively, 0.9%)
above the pseudooptimum value; for the problem with
144 cities, after 770 s, the average solution value is

No. No. No. CPU % Above
Cities Vehicles k q s c Iterations Time (s) Pseudooptimum

64 16 2 2 2 1 150 1.7 2.4
64 16 2 2 2 1 2,000 17.9 0.9
64 16 2 2 4 1 150 0.7 2.8
64 16 2 2 4 1 2,000 6.2 1.7
256 64 4 2 4 1 500 7.9 1.6
256 64 4 2 4 1 3,000 94.8 0.9
256 64 4 2 2 2 500 8.5 1.8
256 64 4 2 2 2 3,000 96.7 1.2
1024 256 8 2 8 4 3,000 123.7 0.8
144 36 2 3 2 1 1,000 23.7 1.9
144 36 2 3 2 1 5,000 107.5 0.9
324 54 3 3 6 1 1,000 27.9 2.0
324 54 3 3 4 1 10,000 289.9 1.0

PARALLEL ITERATIVE SEARCH METHODS 669

...................................

...

Fig. 6. Pseudo-optimum solutions on some grids.

more than 1.9% above the pseudooptimum value. The
implementation of the automatic algorithm of [6] is not
able to treat the other problems of Table III.

The implementation of our algorithm on distributed
computers is easy. To each subproblem is assigned a
process that has to communicate to the three or four
processes assigned to adjacent regions (Fig. 7 shows
the flows of information between processes). The divi-
sion of the problem into regions occurs once. Then,

Fig. 7. Transfers of information between processes.

every process transmits tours, undelivered cities, or
empty vehicles to its neighbor process. For example,
the number of tours that a process gives to its neighbor
process placed at its right and receives from its left
neighbor may be fixed between each summary resolu-
tion. The communications between processes located
in the same sector must be done alternatively in direc-
tion of the depot and in the other direction, so that all
the processes keep about the same sizes of sub-
problems.

The most important limitation of the efficiency of
such a parallelization is due to the difference of comput-
ing time between the slowest process (e.g., the one
that has to deal with the largest subproblem) and the
fastest. Experimentally, efficiencies of more than 80%
may be reached if the problem is not partitioned into
very small subproblems (let us say less than four vehi-
cles per subproblem for the considered problems).

4. NONUNIFORM PROBLEMS

We have seen that our decomposition method does not
work well if the cities are not regularly distributed
around the depot or if the depot is not centered. More-
over, our method cannot be applied to non-Euclidean
problems because it is based on the coordinates of the
cities; in this case, we propose a decomposition method
based on the partition of the arborescence of the short-
est paths from the depot to all the cities. The intuition

670 TAILLARD

is that cities that are near to each other will probably
belong to the same branch of the arborescence and
thus will probably belong to the same subproblem.

Partition of non-Euclidean problems:

Data: n cities, 1 depot.

d;: distance between cities i and j (i, j =
0...n).

Q: capacity of the vehicles.

g;: demand of each city i = 1. .. n).

c: maximal number of vehicles per sub-
problem.

Building the arborescence of the shortest paths:
Construct the set of the shortest paths from the
depot to each city; this set is an arborescence «
that has the depot as the root. Let 7; be the total
quantity of goods to deliver to the cities for which
city i is the root of a subarborescence of « (for a
leaf, we have ¢; = g;; for the depot, we have ¢, =
-1 g and let D; be the depth of city i in the
arborescence (i.e., the number of arcs of the path
from 0 to i).

Set r = 0 (number of subproblems created).

Decomposition of the arborescence:

While ¢, # 0 repeat:
Let j be a city such that
(1) j is not assigned to a subproblem
2 tj=cQ
) t, > cQ, where k is the city (if any) con-
nected to j with D, = D; — 1
(4) D; = D; for every city j' meeting condi-
tions (1) to (3)
(5) t; = t; for every city j” meeting conditions
(1) to (4).
Setr=r+1
Assign to subproblem r the cities contained in
the subarborescence having j as root and that
have not been assigned to another subproblem.
Assign v, = |(1; + 1.2)/Q] vehicles to sub-
problem r.
Set t; = t; — ¢, for each city i belonging to the
shortest path from depot to j.

This decomposition of the problem may be viewed
as the deletion of arcs in the arborescence a; a sub-
problem is then assigned for each connected compo-
nent. In other words, this decomposition of the arbo-
rescence consists in deleting arcs in such a way that
the subproblems successively created involve a quan-
tity of goods as close to c¢Q as possible and as far from
the root (in terms of number of arcs) as possible. The
arcs deleted link the subproblems to each other in a
natural way; it is easy to transfer nondelivered cities
or tours from one subproblem to another.

This algorithm solves the following problem:

Given an arborescence having n + 1 vertices of
weight ¢; (= 0 ... n, g, = 0) and a value cQ,
suppress a minimum number of arcs of the arbores-
cence such that each resulting connected component
has a weight smaller or equal to cQ.

If the problem is Euclidean, the arborescence of the
shortest paths is a star (i.e., every city is connected
directly to the depot); in this case, the decomposition
is not appropriate. Instead of taking the arborescence
of the shortest path, we suggest taking the minimum
weighted spanning arborescence, where the weight p;;
of an arc between i and j [of rectangular coordinates
(x;, y) and (x;, y) and distant d;; = (’y‘lj:;;) from each
other] is given by the formula !

d;-d; .
d; (1 +,L(1 ——’—))nf d, || ||l # 0
_ [l [Tag)) el e

;| otherwise,

Dij

where v - w denotes the scalar product of vectors v and
w, and |jv| denotes the length of vector ». The
nonnegative parameter w permits modification of the
shape of the tree: u = 0 implies that p; = ||d|; for
p > 0, the more the angle between vectors [d,;| and
||l is away from 7, the more the weight p;; is greater
than ||d.

Figure 8 shows graphically the influence of the pa-
rameter u on the shape of the arborescence. The bigger
. is, the more the arcs of the minimum weighted span-
ning arborescence are in the direction of the depot.
The set of points represents the towns and villages of
the canton of Vaud in Switzerland; we chose the root
at the Ecole Polytechnique Fédérale de Lausanne
(EPFL). Varying the parameters u and c in this algo-
rithm permits obtaining various partitions of the prob-
lem. Moreover, these partitions may be found very
easily and efficiently; this is not the case for the decom-
position method of [5] that requires solving an NP-hard
problem (generalized assignment). The arborescence
obtained with u set to 1 or 2 looks (subjectively) very
close to the arborescence of the shortest paths of the
actual roads network. Although this partition algorithm
has not been formally tested on non-Euclidean prob-
lems, we think that it should work well on real-life
problems.

Thus, we divide irregular problems using this de-
composition technique (choosing u = 0.7) and solving
the subproblems as we did for the polar decomposition.
However, we do not transmit cities or tours between
resolutions any more (this is the reason for the experi-

PARALLEL ITERATIVE SEARCH METHODS 671

Fig. 8. Influence of parameter u on the shape of the arborescence: (a) u = 0; (b) u = 0.5; (c) u = 2.

mental value 1.2 in the formula that fixes v, , the number
of vehicles attributed to region r; this value is conve-
nient for the instances of problems that we have consid-
ered; for other instances, it might be changed), but at
the dth resolution, one starts with the best solution
found at the d — 1th resolution and (2dn)/r iterations
of TS are performed.

Table IV compares our new algorithm to the previ-
ous one on irregular problems. We see that this new
decomposition of the problems permits obtaining satis-
factory solutions very rapidly. (The best-known solu-
tion value of the problem with 120 cities is 1042.11;
the best-known solution value of the problem with 385
cities is 24599.6.) So, this decomposition method suc-
ceeds in finding a logical partition into subproblems.

The problem due to [2] is the one without longest
tour limitation. The problem involving 385 cities has
been generated as follows: Each city is the most im-
portant town or village of the smallest political entity
(commune) of the canton of Vaud in Switzerland. The
census of inhabitants of each commune has been taken
at the beginning of year 1990. We have considered a
demand of 1 unit per 100 inhabitants (but at least 1 for
each commune) and vehicles of capacity 65. If a town

has a demand of more than the capacity of the vehicles
(hence, many vehicles have to visit this town), we have
considered that all the vehicles except one will visit
this town while being fully loaded. This means that the
problem may be treated as if the demand g; of city i
that has a population of 4, inhabitants, is

m). h

q; =
h; .
max (1, [m-l modulo 65) otherwise.

[x] denotes the biggest whole number smaller than
x + 1. The depot was placed at the EPFL. The tours
including only one city and performed by vehicles fully
loaded have not been taken into account.

5. CONCLUSIONS

We have shown that it is possible to decompose VRP
including a large number of vehicles into subproblems

TABLE IV. Partition into polar regions and partition of the arborescence

Solution
Value (Polar Solution Value CPU Time
No. Cities Origin Partition) (Arborescence) (s)
120 [2] 1463.2 1133.1 3.2
120 [2] 1266.1 1061.3 19.7
120 [2] 1243.1 1055.4 28.0
385 Pseudo-real 31216.0 26027.8 76.0
385 Pseudo-real 26534.3 25270.5 520.0

672 TAILLARD

that may be solved independently. A decomposition
into polar regions is appropriate for uniform problems,
as demonstrated by the very high quality of the solu-
tions found for all of the classical problems. However,
we think that it is possible to more quickly find very
good solutions by exploring other policies of data trans-
mission between processes.

For nonuniform or non-Euclidean problems, an-
other decomposition method is proposed and although
the results obtained are acceptable, we think that poli-
cies of data transmissions between processes have to
be studied in order to get very good solutions for such
problems. For example, to imitate the partition into
polar regions, one could build an arborescence with u
slightly smaller than 0 (—0.2) and the arcs joining two
different subproblems and belonging to this arbores-
cence might be interesting data transmission paths.
Another possibility is to use the decomposition of the
arborescence as a first decomposition of the problem
and then to use the decomposition into polar regions
for the subsequent decompositions of the problem. For
non-Euclidean problems, interesting data transmission
paths other than those belonging to the arborescence
of the shortest paths might be problematic to deter-
mine. But, for real-life problems, the coordinates of
the cities are known and it is possible to use, for the
subsequent partitions of the problems, the decomposi-
tion into polar regions.

To test the efficiency of our method on large prob-
lems, we have proposed problems, generated on a grid,
for which the optimum solutions seem known. Our
methods, although not specially designed for such
problems, rapidly find solutions at 1% above the pseu-
do-optimum solution values. Although we have not
tested a partition into rectangular regions, as proposed
by [11], we think that such a partition would be more
appropriate for grid problems.

To conclude, we think that this paper outlines some
principles that might be useful for creating new power-
ful software for the VRP.

The author would like to thank E. A. Silver whose valuable
and multiple suggestions have improved the presentation of
this paper. This research was supported by the Fonds national
suisse pour la recherche scientifique, Grant Number 20-
27926.89.

REFERENCES

[1] K. Altinkemer and B. Gavish, A parallel savings heuris-
tic for the delivery problem with a log Q error guaran-
tee. Graduate School of Management, University of
Rochester, Rochester, NY (1985).

(2]

(3]

[4]

(5]

(6]

(7]

(8]

9]

(10]
(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

N. Christofides, A. Mingozzi, and P. Toth, The vehicle
routing problem. Combinatorial Optimization (N.
Christofides, A. Mingozzi, P. Toth, and C. Sandi,
Eds.). Wiley, Chichester (1979) 315-338.

G. Clarke and J. W. Wright, Scheduling of vehicles
from a central depot to a number of delivery points.
Operations Res. 12 (1964) 558-581.

M. Desrochers and T. W. Verhoog, A Matching Based
Saving Algorithm for the Vehicle Routing Problem.
Cahier du GERAD G-89-04, Ecole des Hautes Etudes
Commerciales de Montréal (1989).

M. L. Fisher and R. Jaikumar, A generalized assign-

ment heuristic for vehicle routing. Networks 11
(1981) 109-124.

M. Gendreau, A. Hertz, and G. Laporte, A tabu search
heuristic for the vehicle routing problem. Report CRT-
777, Centre de recherche sur les transports, Université
de Montréal (1992) Management Sci. to appear.

B. Gillett and L. Miller, A heuristic algorithm for the
vehicle dispatch problem. Operations Res. 22 (1974)
340-349.

F. Glover, E. Taillard, and D. de Werra, A user’s guide
to tabu search. Ann. Operations Res. 41 (1993) 3-28.
F. Harche and P. Raghavan, A generalized exchange
heuristic for the capacitated vehicle problem. Working
paper. Stern School of Business, New York Univer-
sity (1991).

A. Hertz, Private communication (Oct. 19, 1992).

R. M. Karp, Probabilistic analysis of partitioning algo-
rithms for the travelling salesman problem in the plane.

. Math. Operations Res. 2 (1977) 209-244.

A Marchetti Spaccamela, A. H. G. Rinnooy Kan, and
L. Stougie, Hierarchical vehicle routing problems. Net-
works (1984) 571-586.

R. H. Mole and S. R. Jamerson, A sequential route-
building algorithm employing a generalised savings cri-
terion. Operational Res. Q. 27 (1976) 503-511.

I. H. Osman, Metastrategy simulated annealing and
tabu search algorithms for the vehicle routing problem.
Ann. Operations Res. 41 (1993) 421-451.

V. M. Pureza and P. M. Franga, Vehicle routing prob-
lems via tabu search metaheuristic. Publication CRT-
747, Centre de recherche sur les transports, Mon-
tréal (1991).

F. Semet and E. Taillard, Solving real-life vehicle rout-

ing problems efficiently using taboo search. Ann. Oper-
ations Res. 41 (1993) 469-488.

D. Simchi-Levi and J. Bramel, On the optimal solution
value of the capacitated vehicle routing problem with
unsplit demands. Department of Industrial Engineering
and Operations Research, Columbia University, New
York, 1990 (revision 1991).

E. Taillard, Parallel taboo search techniques for the
job shop scheduling problem. Report ORWP 89/11 (re-
vision 1992), Département de mathématiques, Ecole
Polytechnique Fédérale de Lausanne (1989). ORSA J.
on Comp. To appear.

(19]

[20]

P. Toth, Heuristic algorithms for the vehicle routing
problem. Presented at the Workshop on Routing Prob-
lems, Hamburg (1984).

A. Volgenant and R. Jonker, The symmetric traveling

salesman problem and edge exchanges in minimal 1-
tree. Eur. J. Operational Res. 12 (1983) 394-403.

PARALLEL ITERATIVE SEARCH METHODS 673

[21] A. G. Willard, Vehicle routing using r-optimal tabu
search. M.Sc. Dissertation, The Management School,
Imperial College, London (1989).

Received April 1992
Accepted May 1993

