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1 Introduction

Who was not once perplex when reading, in an article comparing two optimization meth-
ods, numerical results presented under the following form : “We have tested our optimization
method A on a set of n problem instances from the literature and we succeeded in solving a
of these instances. The concurrent method B succeeded in solving only b of these instances.
However, it has to be noted that method B was tested only on m over the n instances”. In-
deed, the reader has no answer to the basic question : “Is a success rate of a/n significantly
superior to a success rate of b/m ? ”. Very often, the answer to this central question cannot
be found in classical statistical tests, since the lasts require large sample sizes (at least about
15).

Nevertheless, in combinatorial optimization, problem instances sets are frequently smaller
than 15. Intuitively, the reader is perfectly convinced that a method A that succeeded in
solving all 10 problem instances of a given set is better than a method B that solved none of
them. On the contrary, the reader will not be really convinced if the problem set contains only
3 instances. However, supposing that the problem instances have been chosen independently
from the solving methods, it can be shown that a 3/3 rate of success is significantly larger
(with a confidence level higher than 98% ) than a 0/3 rate of success.

It could be argued that larger problem sets must be used, so that standard statistical sets
could be applied. Unfortunately this is not always possible. First, for real problems, collecting
data for a single instance may take several weeks. Second, there are classical problem instances
libraries (ORLIB [2], QAPLIB [3], TSPLIB [4]) that seldom propose more than 10 instances
for a given problem size. Third, it can be noted that many optimization methods are very
time consuming (for instance the code for the quadratic assignment problem of [1] which took
the equivalent of 7 years CPU time on a sequential computer for solving instance Nug30). In
such a case, it might be more interesting to estimate the performances of a method on few
large problem instances than on a multitude of toys-instances.
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2 Standard statistical test

The comparison of rate of successes for two populations A and B is traditionally done as
follows : Let pa (respectively pb) be the probability of success of population A (respectively
population B) and random samples of size n (respectively m) are taken for the experiment.
Then, the statistic U = Xa/n − Xb/m (where Xa and Xb are random variables associated
with successful experiments in populations A and B) has the mean pa − pb and variance
pa · qa/n + pb · qb/m, where qa = 1− pa and qb = 1− pb. For conducting a statistical test, the
null hypothesis is pa = pb = p, so that U should have a mean of 0.

If both n and m are large, U is approximately normally distributed and the common
probability p can be estimated by p̂ = a+b

m+n , where a and b are the number of successes observed
in populations A and B. The null hypothesis will be rejected (and pa will be considered to
be higher than pb) if Φ(û) > α, where α is the confidence level, Φ is the cumulative standard
normal distribution and

û =
a/n− b/m√

a+b
n+m · n+m−a−b

n+m · (1/n + 1/m)

Practically, if both n and m are higher than 14, the null hypothesis can be reasonably
rejected if û > 1.65(α = 95%), û > 2.06(α = 98%), û > 2.33(α = 99%), û > 2.58(α = 99.5%),
û > 3.09(α = 99.9%).

3 A non parametric statistical test

In order to answer the question : “Does a observation of a criterion over a sample of size n
represent a rate higher than b occurrences over a sample of size m ? ”, it can be proceeded as
follows :

Null hypothesis : Let us suppose that the (unknown) rate p of occurrence of the criterion
is the same for both sample (i.e. pa = pb = p). Under the null hypothesis, the probability
S(p, a, n, b,m) to observe a successes or more in the first population (of size n) and b successes
or less in the second population (of size m) is given by the product of two binomial distributions
(Cn

i = n!
i!·(n−i)! and Cm

j = m!
j!·(m−j)! are the binomial coefficients) :

S(p, a, n, b,m) = (
n∑

i=a

Cn
i · pi · (1− p)n−i) · (

b∑
j=0

Cm
j · pj · (1− p)m−j)

Alternate hypothesis : pa > pb i.e. the success rate of method A is higher than the success
rate of method B.

The null hypothesis has to be rejected with a confidence level α (and the alternate hypoth-
esis accepted, i.e. an a/n rate will be considered higher than a b/m rate) if

max
0<p<1

S(p, a, n, b,m) ≤ 1− α
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4 Examples

Let us suppose that all n observations from the first sample where successes and all m obser-
vations from the second sample where failures (i.e. a = n and b = 0). Supposing that both
populations have the same probability of success, S(p, n, n, 0,m) = pn · (1−p)0 ·p0 · (1−p)m =
pn · (1− p)m.

The probability p̂ that maximizes S(p, n, n, 0,m) is given by solving the equation :

dS(p, n, n, 0,m)
dp

= npn−1 · (1− p)m −mpn · (1− p)m−1 = 0

For the special case a = n and b = 0, the pooled estimate p̂ = a+b
m+n is therefore the value

that maximizes S(p, a, n, b,m) over p. For instance, if n = 3 and m = 2, S(3/5, 3, 3, 0, 2) =
108/3125 < 5%. So a success rate of 3/3 is significantly higher (with confidence level of 95%)
than a success rate of 0/2.

Unfortunately, for arbitrary values of a, n, b and m, the pooled estimate is not the
value that maximizes S(p, a, n, b,m) over p. For instance, S(3/7, 3, 4, 0, 3) < 4/100 and
S(6−2

√
2

7 , 3, 4, 0, 3) > 4/100. This means that testing if a rate of 3/4 is significantly higher
than a rate of 0/3 with a confidence level of 96% whould lead to an erroneous conclusion if the
pool estimate is used. In general, the analytic expression of p̂ is at least hard to be found in
practice. Therefore, we have numerically estimated p̂ and provide in Table 1 (and, respectively
in Table 2), for various values of n and m and for a confidence level of 95% (respectively 99%),
the most extreme couples (a, b) for which an a/n rate of success is higher than a b/m rate.

Reading the tables Let us suppose that the observed success rate of an optimization
method A is 6/10 and the observed success rate of method B is 1/9 (meaning that a = 6,
n = 10, b = 1, m = 9). In Table 1, entry n = 10 and m = 9 contains the couple (5,1), meaning
that a 5/10 success rate is significantly higher than a 1/9 success rate at 95% confidence level.
Since the success rate 6/10 > 5/10 it can be deduced that method A is significantly better
than method B (at 95% confidence level).

5 Conclusions

This article presents a non-parametric statistical test that is very interesting for those who
want to compare different heuristic algorithms that do not necessarily end with feasible (or
satisfying) solutions. This test has been specially designed for working with very small sample
sizes, meaning that a substantial computational effort can be saved when conducting numerical
experiments.

When the sample sizes are lower than 15, standard statistical tests for comparing the
success rates of two populations cannot be validly used. We have indeed observed that the
standard statistical test —abusively applied — provides results that are erroneous. So it is for
very high confidence rates, even if sample sizes are larger than 15. Therefore, a non parametric

Kyoto, Japan, August 25–28, 2003



110-4 MIC2003: The Fifth Metaheuristics International Conference

n
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 (3,0) (4,0) (5,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0) (11,0) (11,0)
(14,1) (15,1)

3 (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0)
(5,1) (6,1) (7,1) (8,1) (8,1) (9,1) (10,1) (11,1) (12,1) (12,1) (13,1)

(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0)
4 (3,1) (4,1) (5,1) (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (9,1) (10,1) (11,1) (11,1)

(6,2) (7,2) (8,2) (9,2) (10,2) (11,2) (12,2) (12,2) (13,2) (14,2)
(2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0)

5 (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1)
(4,2) (5,2) (6,2) (7,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (12,2)

(8,3) (9,3) (10,3) (11,3) (12,3) (13,3) (14,3) (15,3)
(2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1)

6 (3,2) (4,2) (5,2) (5,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2) (11,2) (11,2)
(5,3) (6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3)

(10,4) (11,4) (12,4) (13,4) (14,4) (15,4)
(2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (7,1) (8,1)

7 (3,2) (4,2) (4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2)
(4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (11,3) (12,3)

(6,4) (7,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4) (13,4) (14,4)
(11,5) (12,5) (13,5) (14,5) (15,5)

(2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1)

(3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2)
8 (3,3) (4,3) (5,3) (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3) (11,3)

(5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4) (13,4)
(7,5) (8,5) (9,5) (10,5) (11,5) (12,5) (12,5) (13,5) (14,5)

(13,6) (14,6) (15,6)
(2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (4,0)
(2,1) (2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1)
(2,2) (3,2) (3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2)

9 (3,3) (4,3) (4,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3)
(4,4) (5,4) (6,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4)

(5,5) (6,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (12,5) (12,5) (13,5)
(8,6) (9,6) (10,6) (11,6) (12,6) (13,6) (14,6) (14,6)

(15,7)
(2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0)
(2,1) (2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1)
(2,2) (3,2) (3,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2)

10 (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3)
(3,4) (4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (10,4) (11,4)

(4,5) (5,5) (6,5) (7,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (12,5) (12,5)
(6,6) (7,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6) (13,6) (14,6)

(9,7) (10,7) (11,7) (12,7) (13,7) (14,7) (15,7)
(2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0)
(2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1)
(2,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (7,2)

(3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (7,3) (8,3) (8,3) (9,3)
11 (3,4) (4,4) (5,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (10,4)

(4,5) (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5)
(5,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (11,6) (11,6) (12,6) (13,6)

(7,7) (8,7) (9,7) (10,7) (11,7) (11,7) (12,7) (13,7) (14,7)
(10,8) (11,8) (12,8) (13,8) (14,8) (15,8)

(2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0)
(2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (5,1)
(2,2) (3,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (6,2) (7,2) (7,2)
(2,3) (3,3) (3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (8,3)

12 (3,4) (4,4) (4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4)
(3,5) (4,5) (5,5) (5,5) (6,5) (7,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5)

(4,6) (5,6) (6,6) (7,6) (7,6) (8,6) (9,6) (9,6) (10,6) (11,6) (11,6) (12,6)
(5,7) (6,7) (7,7) (8,7) (9,7) (9,7) (10,7) (11,7) (12,7) (12,7) (13,7)

(7,8) (8,8) (9,8) (10,8) (11,8) (12,8) (12,8) (13,8) (14,8)
(11,9) (12,9) (13,9) (14,9) (15,9)

(2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0)
(2,1) (2,1) (2,1) (3,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1)
(2,2) (3,2) (3,2) (3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (6,2) (7,2)
(2,3) (3,3) (3,3) (4,3) (4,3) (5,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3)

(3,4) (4,4) (4,4) (5,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4) (9,4)
13 (3,5) (4,5) (5,5) (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (9,5) (10,5) (10,5)

(4,6) (5,6) (6,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (10,6) (11,6) (11,6)
(5,7) (6,7) (7,7) (7,7) (8,7) (9,7) (10,7) (10,7) (11,7) (12,7) (13,7)

(6,8) (7,8) (8,8) (9,8) (10,8) (10,8) (11,8) (12,8) (13,8) (13,8)
(8,9) (9,9) (10,9) (11,9) (12,9) (13,9) (14,9) (14,9)

(12,10) (13,10) (14,10) (15,10)

Table 1: Couples (a, b) for which a success rate ≥ a/n is significantly higher than a successes
rate b/m, for a confidence level of 95%.
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n
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (12,0) (13,0) (14,0)
3 (4,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0) (11,0) (11,0) (12,0)

(12,1) (13,1) (14,1) (15,1)
4 (3,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (8,0) (8,0) (9,0) (9,0) (10,0) (11,0)

(6,1) (7,1) (8,1) (9,1) (10,1) (11,1) (11,1) (12,1) (13,1) (14,1)
(3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0) (9,0)

5 (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (10,1) (10,1) (11,1) (12,1) (12,1)
(9,2) (10,2) (11,2) (12,2) (13,2) (14,2) (14,2)

(3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0)
6 (4,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (11,1) (11,1)

(6,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (13,2) (13,2)
(11,3) (12,3) (13,3) (14,3) (15,3)

(2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (7,0) (8,0)
(4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (10,1)

7 (5,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (12,2)
(8,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3) (14,3)

(13,4) (14,4) (15,4)
(2,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1)
8 (4,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2)

(6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3)
(9,4) (10,4) (11,4) (12,4) (13,4) (14,4) (14,4)

(15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1)
9 (4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2) (10,2) (11,2)

(5,3) (6,3) (7,3) (8,3) (8,3) (9,3) (10,3) (10,3) (11,3) (12,3) (12,3)
(7,4) (8,4) (9,4) (10,4) (11,4) (11,4) (12,4) (13,4) (14,4)

(10,5) (11,5) (12,5) (13,5) (14,5) (15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1)
(4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2) (10,2)

10 (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3) (11,3) (12,3)
(6,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (12,4) (12,4) (13,4)

(8,5) (9,5) (10,5) (11,5) (12,5) (13,5) (13,5) (14,5)
(12,6) (13,6) (14,6) (15,6)

(2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0) (6,0)
(3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1)
(3,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2)

11 (4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3) (11,3) (11,3)
(5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4) (12,4)

(7,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5) (13,5) (13,5)
(9,6) (10,6) (11,6) (12,6) (13,6) (14,6) (14,6)

(13,7) (14,7) (15,7)
(2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0)

(3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (7,1) (8,1)
(3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2)

(4,3) (5,3) (5,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3) (11,3)
12 (5,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (11,4) (12,4)

(6,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (11,5) (12,5) (13,5)
(8,6) (9,6) (10,6) (11,6) (12,6) (12,6) (13,6) (14,6)

(10,7) (11,7) (12,7) (13,7) (14,7) (15,7)
(14,8) (15,8)

(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1) (7,1)

(3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (7,2) (8,2) (8,2) (9,2)
(4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3)

13 (4,4) (5,4) (6,4) (6,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4) (11,4) (11,4)
(5,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5) (12,5)

(7,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6) (13,6) (13,6)
(8,7) (9,7) (10,7) (11,7) (12,7) (13,7) (13,7) (14,7)

(11,8) (12,8) (13,8) (14,8) (15,8)
(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1)

(3,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (8,2)
(3,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3)

14 (4,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (10,4) (11,4)
(5,5) (6,5) (7,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (11,5) (12,5)

(6,6) (7,6) (8,6) (9,6) (9,6) (10,6) (11,6) (11,6) (12,6) (13,6)
(7,7) (8,7) (9,7) (10,7) (11,7) (11,7) (12,7) (13,7) (14,7)

(9,8) (10,8) (11,8) (12,8) (13,8) (14,8) (14,8)
(12,9) (13,9) (14,9) (15,9)

(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1)

(3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2)
(3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3)

(4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4) (10,4)
15 (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5) (11,5)

(5,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6) (12,6)
(7,7) (8,7) (9,7) (10,7) (10,7) (11,7) (12,7) (12,7) (13,7)

(8,8) (9,8) (10,8) (11,8) (12,8) (12,8) (13,8) (14,8)
(10,9) (11,9) (12,9) (13,9) (14,9) (15,9)

(13,10) (14,10) (15,10)

Table 2: Couples (a, b) for which a success rate ≥ a/n is significantly higher than a successes
rate b/m, for a confidence level of 99%.
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test has been developed. This test is more accurate and can be applied for any sample sizes,
but it requires relatively heavy computations. So, pre-computed values for 95% and 99%
confidence levels have been tabulated in the present article. The computation of confidence
levels can also be done online at the URL : http://ina.eivd.ch/projects/stamp/

When the sample sizes are at least 15, we have observed that the probability of rejecting
the null hypothesis when the last is true for the standard test almost always over estimates
the corresponding value obtained with the non parametric test. This means that the standard
test very seldom reject the null hypothesis when it has to be accepted, according to the non
parametric test. Let us mention that, very often, the standard test strongly over estimates the
value of the probability of the null hypothesis, meaning that the non parametric test proposed
is more powerful than the standard one.
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