
MIC2005: The Sixth Metaheuristics International Conference ??-1

Few guidelines for analyzing methods

Éric D. Taillard∗

∗Department of Electrical & Computer Engineering, University of Applied Sciences of
Western Switzerland

Route de Cheseaux 1, Case postale, CH-1401 Yverdon, Switzerland
eric.taillard@eivd.ch

1 Introduction

Designing a solving method that is either exact or heuristic or deterministic or stochastic is a
multi-objective process. The main dimensions that are commonly considered are:

• The computational resources

• The problem instance space

• The quality of solutions obtained, in case of an optimization problem

All these dimensions are not necessarily simultaneously present. For instance, if we are
dealing with a simple problem for which an exact polynomial algorithm is known, the problem
instance space is often restricted to the positive integers, corresponding to the instance size.
Indeed, in this case, we are mainly interested by the evolution of the computational effort
with the problem size growth. Since the algorithm produces exact solutions, the “quality”
dimension doesn’t exist.

In this presentation, we first propose few guidelines on the way all these dimensions can
be measured or treated. We then present few statistical techniques that can help the prac-
titioner to evaluate confidence intervals for measures made when designing a new method or
for comparing methods one another. Indeed, decisions must be taken while designing a new
method. Typically, there are parameters to tune for a method based on metaheuristic prin-
ciples. Often, the method is stochastic, meaning that its result depends on the run. The set
of instances cannot be completely examined. So, the instances on which a method is tested
must be chosen. This can also be viewed as an additional stochastic component. Therefore,
the designer must take decisions in an uncertain context. Statistical tests are precisely a way
to help decision-maker working under uncertainty. Finally we present few possibilities of a
software developed in our Institute for comparing solving methods via a web interface.

Vienna, Austria, August 22–26, 2005



??-2 MIC2005: The Sixth Metaheuristics International Conference

2 Measuring computational resources

There are several computational resources that can be considered, typically the computational
effort, the number of processors and the memory requirement. In this presentation, we restrict
ourselves to sequential algorithms, so, we suppose that the number of processors is 1. Since
measuring the computational effort and the memory requirement can be done in a similar way,
we will only consider the computational effort in this section, to simplify.

It is possible to perform absolute or relative measures. An absolute computational effort
can be obtained by counting the number of characteristic operations of an algorithm as a
function of the problem size (n) or others of its characteristics. As it is difficult to count all
the operations (and to express this under the form of a function a(n)), we are mainly interested
in the order of magnitude of the number of operations. This is the reason of the introduction
of the O(·) notation.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000

n

s
e
c
o
n
d
s
, 
it
e
ra
ti
o
n
s

Seconds

Iterations

Sec./iter.

Quadratic function

Figure 1: Evolution of 2-opt computational effort as a function of problem size for Euclidean
TSP instances uniformly distributed in a unit square

Generally, but not always, it is easy to derive a function f(n) that is an upper bound to
the true value a(n) of operations needed by an algorithm for the worst instance of size n. If
there is a constant c > 0 such that limn→∞ c · f(n) ≥ a(n) then it is said that a(n) is in
O(f(n)) or a(n) ∈ O(f(n)). When we have a lower bound (best case), the notation is Ω(·).
When we have both a lower and upper bound (in any case), the notation is Θ(·), which is
not an “average complexity”, since this notion is not well defined. These notations allow to
compare algorithms in an exact and theoretical way. Indeed if algorithm A is in O(f(n)) and
algorithm B in Ω(g(n)) and g(n) /∈ O(f(n)), then it can be said that, asymptotically, A is
faster than B. However, for the practitioner, these notions could be problematic. On the one
hand, if both algorithm are in Θ(f(n)), we have no idea about their relative efficiency. On
the second hand, the lower and upper bound Ω(f(n)) and O(g(n)) that can be theoretically
derived could be far one another. For instance, it is easy to show that finding local optima to
a travelling salesman problem using 2-opt or Or-opt neighbourhood is in Ω(n2) and in O(n!).

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-3

The gap between n2 and n! is huge and not easy to reduce.

The practitioner is certainly not interested to consider the worst theoretical case but is
rather interested to limit himself to problem instances with a special structure. In this case,
the practitioner may find an empirical function h(n) that provides an approximation of the
computational effort of the algorithm, for a specified class of problem instances. For instance,
h(n) = nα, with α a positive constant, could be a good model. Figure 2 show the evolution
of various measures of computational effort observed for a local search procedure based on
2-opt neighbourhood as a function of problem size, for Euclidean TSP instances uniformly
distributed in a unit square. In this figure, it seems clear that the time per 2-opt iteration (i.e.
examining once the entire neighbourhood; improving moves are immediately performed) grows
quadratically, as expected theoretically. This figure shows that the number of times the entire
neighbourhood is evaluated also grows, but very slowly. In [Taillard (2003)], we have proposed
to use the notation Ô(h(n)) to clearly show that h(n) is an estimate of the complexity and
not a theoretical, exact complexity. In the above example, the empirical complexity seems to
be Ô(n2.22), which is far from the O(n!) theoretical complexity.

We must stress here that it can be difficult to get a good estimate of the α constant in
the above example. Indeed, the measures of computational times suffer from large imprecision
for various reasons. Extrapolating computational times on another computer, for instance
by using “Dongarra’s factor” [Dongarra (2005)] can be even more imprecise. Therefore, we
strongly recommend, when it is possible, to publish computational effort using an absolute
measure (e.g. number of iterations of a local search (together with the theoretical complexity
for performing one iteration), number of nodes evaluated, number of solutions evaluated, etc.)
in addition to a relative measure like the computational time.

For a decision problem (solution found or not, in a large meaning: an optimization problem
with a fixed objective value to reach can be considered as a decision problem), only the
dimension “computational resources” can be considered. In this case, for comparing different
methods, it is possible to consider the proportion of successes of the methods. Section 5.1
proposes a guideline to proceed to comparisons in this case.

3 Problem instances

We insist on complexity notions because we think that this dimension is often overwhelm in
the metaheuristic community. Indeed, practitioners often focus on instance sets with relatively
small variation in problem size (typically, there is a factor of less than 102 between the largest
and the smallest instance). Focusing on such problem instance sets doesn’t allow to analyze
the factor of the problem size (The example given above in Figure 2 could be criticized, since
the factor is only 103). There are however notorious exceptions, exemplified by travelling
salesman problem sets, for which the factor is rather 105 or 106.

To analyze a method, it is a good practice to deal with instances of very different size,
but one has to refrain providing statistics that are too aggregated and that can hide some
effects (for instance, increasing the number of small, easy instances can artificially improve the
statistics). We recommend to stratify the problem instances (i.e. to group problem instances
with the same structure, like the size or the generation procedure) in order to diminish the

Vienna, Austria, August 22–26, 2005



??-4 MIC2005: The Sixth Metaheuristics International Conference

variance of the observations (time, quality) so that more accurate results can be provided.
The exceptionally small dispersion that can be observed in Figure 2 is due to the fact that the
problem instances considered have all the same structure and 102 to 106 problem instances for
each size have been considered.

4 Quality measure

In this section, we suppose that we have only one quality measure. So, in case of multi-objective
optimization we suppose that one of the numerous metrics for measuring the efficiency of
methods has been used. When the problem instances are finely stratified (especially regarding
the values of the input data), it is possible to use the objective function as a quality measure.
For instance it is possible to take the length of travelling salesman problems instances of a
given size, randomly, uniformly generated in the unit square. Indeed, in this case, the variance
of optimal tour length is very low for such instances. But, more frequently, it is required to
“normalize” the data, for instance by measuring the quality in % of deviation from a reference
value. The best reference value is the optimum but it is generally unknown. Practically,
one chooses either a bound on this value or the value of the best feasible solution known.
Both of these values are supposed to evolve. Therefore, it is necessary to carefully report on
the reference value considered in order to avoid confusion. Measuring the deviation from a
reference value cannot be done in case the objective can be 0. In this case, one has to project the
objective in the interval [0, 1] by taking two reference values corresponding to lower and upper
bounds to the objective. Finally, let us mention that ranking various solutions is perhaps the
simplest and safest way to normalize data. Indeed, statistics based on ranks are very robust,
insensitive to outliers and do not require large number of observations. Proceeding like this,
we must be aware that other information is available. We loose the information of how large
is the quality gap between two solutions having adjacent ranks. This can lead to paradoxical
situations. For instance, the mean of a sample can be lower than the mean of another sample,
while it can be the reverse for the ranks.

5 Few statistical methods for comparing algorithms

In order to proceed to comparisons on statistical basis, we have to start by making hypothesis.
So, we are going to make the following hypothesis:

• The practitioner is honest. The problem instances are not selected in a strange way; if
computational times are considered, sufficiently large incertitude margins are taken so
that the conclusions are not biased. A factor of 10 in computational times shouldn’t
be exceptional. The number of instances considered should be sufficient (generally, one
can work comfortably with 20 observations; in case of the comparison of stochastic
algorithms, one can multiply the number of runs if the problem set is restricted).

• The practitioner is not in immoderate love with statistics and has almost no idea about
the distribution functions of the samples studied. So, a limited panel of statistical tests
is convenient, provided that they are robust, easy to use and based on weak hypothesis.

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-5

Table 1: A contingency table counting successes and failures of two methods

Success Failure Total
Method A a n − a n
Method B b m − b m

In this section, we are going to propose a “rescue toolkit” for such a practitioner, supposed
to be randomly chosen in the metaheuristic community. We will not recall standard tests that
can be found in every college’s level book, that are based on very strong assumptions such as
Gaussian distribution of the samples, assumptions that are often violated.

5.1 Comparing two methods with a fixed goal

We suppose here that we want to compare the success rates of two methods. These methods
can be stochastic (in this case, a comparison on a single instance can be done, provided that
such an information has a meaning!) or deterministic (in this case, the problem instances
are considered to be randomly chosen). If both methods are iterative, we suppose that the
comparisons are repeated for different computational efforts. In this case a 2 × 2 contingency
table can be built (see Table 1).

In order to test whether both methods are behaving similarly or not, a test known under
the name of “Fisher’s exact test” can be conducted. This test can be viewed as a permu-
tation test [Good 2005]. We recently developed a similar test [Taillard et al. (2004)]. This
test is more general and more powerful than the sign test [Arbuthnott(1710)] for comparing
proportions, also known as McNemar test.

The article of [Taillard et al. (2004)] is interesting for the practitioner since it tabulates
a, b, n and m values for which success rates of a/n are significantly higher than success rates
of b/m, for significance levels of 5% and 1%. So, the practitioner can compare two methods
just by counting, without further computations. Below is the table published in this reference,
for significance level of 1% (or confidence level of 99%) for small samples. We see that 7
observations may be sufficient in the best case to reach the 1% significance level.

There are numerous statistical tests (based on Chi-Square distribution, see e.g. [Conover (1999)])
that are able to directly treat r × c contingency tables (more than the two (Success, Failure)
categories, more than 2 methods). However, the information given by such tests might be
not so interesting for the practitioner (either at least one method behave differently from the
others, but we don’t know which one, or it cannot be excluded that all the methods behave
identically).

5.2 Confidence interval

In this section, we suppose that the practitioner has executed an optimization algorithm n
times and observed the solutions qualities x = (x1, x2, . . . , xn). The observations are sup-
posed to be independent, of finite variance, but there is no assumption about the distribution

Vienna, Austria, August 22–26, 2005



??-6 MIC2005: The Sixth Metaheuristics International Conference

n
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 (7,0) (8,0) (9,0) (10,0) (11,0) (12,0) (12,0) (13,0) (14,0)
3 (4,0) (5,0) (6,0) (7,0) (7,0) (8,0) (9,0) (9,0) (10,0) (11,0) (11,0) (12,0)

(12,1) (13,1) (14,1) (15,1)
4 (3,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (8,0) (8,0) (9,0) (9,0) (10,0) (11,0)

(6,1) (7,1) (8,1) (9,1) (10,1) (11,1) (11,1) (12,1) (13,1) (14,1)
(3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0) (9,0)

5 (5,1) (6,1) (7,1) (7,1) (8,1) (9,1) (10,1) (10,1) (11,1) (12,1) (12,1)
(9,2) (10,2) (11,2) (12,2) (13,2) (14,2) (14,2)

(3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (8,0) (8,0) (9,0)
6 (4,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (11,1) (11,1)

(6,2) (7,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (13,2) (13,2)
(11,3) (12,3) (13,3) (14,3) (15,3)

(2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (7,0) (7,0) (7,0) (8,0)
(4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1) (10,1)

7 (5,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2) (12,2)
(8,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3) (14,3)

(13,4) (14,4) (15,4)
(2,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1) (10,1)
8 (4,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (10,2) (10,2) (11,2) (12,2)

(6,3) (7,3) (8,3) (9,3) (9,3) (10,3) (11,3) (12,3) (12,3) (13,3)
(9,4) (10,4) (11,4) (12,4) (13,4) (14,4) (14,4)

(15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0) (7,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1) (9,1)
9 (4,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (9,2) (9,2) (10,2) (10,2) (11,2)

(5,3) (6,3) (7,3) (8,3) (8,3) (9,3) (10,3) (10,3) (11,3) (12,3) (12,3)
(7,4) (8,4) (9,4) (10,4) (11,4) (11,4) (12,4) (13,4) (14,4)

(10,5) (11,5) (12,5) (13,5) (14,5) (15,5)
(2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (6,0) (6,0) (6,0)

(3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1) (9,1)
(4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2) (10,2)

10 (5,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3) (11,3) (12,3)
(6,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (12,4) (12,4) (13,4)

(8,5) (9,5) (10,5) (11,5) (12,5) (13,5) (13,5) (14,5)
(12,6) (13,6) (14,6) (15,6)

(2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0) (6,0)
(3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1) (8,1) (8,1)
(3,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2) (10,2)

11 (4,3) (5,3) (6,3) (6,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3) (11,3) (11,3)
(5,4) (6,4) (7,4) (8,4) (8,4) (9,4) (10,4) (10,4) (11,4) (12,4) (12,4)

(7,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5) (13,5) (13,5)
(9,6) (10,6) (11,6) (12,6) (13,6) (14,6) (14,6)

(13,7) (14,7) (15,7)
(2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0) (6,0)

(3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (7,1) (7,1) (7,1) (8,1)
(3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (9,2) (9,2)

(4,3) (5,3) (5,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3) (11,3)
12 (5,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (11,4) (11,4) (12,4)

(6,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (11,5) (12,5) (13,5)
(8,6) (9,6) (10,6) (11,6) (12,6) (12,6) (13,6) (14,6)

(10,7) (11,7) (12,7) (13,7) (14,7) (15,7)
(14,8) (15,8)

(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1) (7,1)

(3,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (7,2) (8,2) (8,2) (9,2)
(4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (9,3) (9,3) (10,3) (10,3)

13 (4,4) (5,4) (6,4) (6,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4) (11,4) (11,4)
(5,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5) (12,5) (12,5)

(7,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6) (13,6) (13,6)
(8,7) (9,7) (10,7) (11,7) (12,7) (13,7) (13,7) (14,7)

(11,8) (12,8) (13,8) (14,8) (15,8)
(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1) (7,1)

(3,2) (4,2) (4,2) (5,2) (5,2) (5,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2) (8,2)
(3,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3) (10,3)

14 (4,4) (5,4) (6,4) (6,4) (7,4) (7,4) (8,4) (9,4) (9,4) (10,4) (10,4) (11,4)
(5,5) (6,5) (7,5) (7,5) (8,5) (9,5) (9,5) (10,5) (11,5) (11,5) (12,5)

(6,6) (7,6) (8,6) (9,6) (9,6) (10,6) (11,6) (11,6) (12,6) (13,6)
(7,7) (8,7) (9,7) (10,7) (11,7) (11,7) (12,7) (13,7) (14,7)

(9,8) (10,8) (11,8) (12,8) (13,8) (14,8) (14,8)
(12,9) (13,9) (14,9) (15,9)

(2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (4,0) (5,0) (5,0) (5,0)
(2,1) (3,1) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1) (5,1) (5,1) (6,1) (6,1) (6,1) (7,1)

(3,2) (4,2) (4,2) (4,2) (5,2) (5,2) (6,2) (6,2) (6,2) (7,2) (7,2) (8,2) (8,2)
(3,3) (4,3) (4,3) (5,3) (5,3) (6,3) (6,3) (7,3) (7,3) (8,3) (8,3) (9,3) (9,3)

(4,4) (5,4) (5,4) (6,4) (7,4) (7,4) (8,4) (8,4) (9,4) (9,4) (10,4) (10,4)
15 (5,5) (6,5) (6,5) (7,5) (8,5) (8,5) (9,5) (10,5) (10,5) (11,5) (11,5)

(5,6) (6,6) (7,6) (8,6) (8,6) (9,6) (10,6) (10,6) (11,6) (12,6) (12,6)
(7,7) (8,7) (9,7) (10,7) (10,7) (11,7) (12,7) (12,7) (13,7)

(8,8) (9,8) (10,8) (11,8) (12,8) (12,8) (13,8) (14,8)
(10,9) (11,9) (12,9) (13,9) (14,9) (15,9)

(13,10) (14,10) (15,10)

Table 2: Couples (a, b) for which a success rate ≥ a/n is significantly higher than a successe
rate ≤ b/m, for a confidence level of 99%.

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-7

function or its symmetry. This situation often occurs in metaheuristics: For instance the
observations are limited by the value of the optimum, implying a truncated and asymmetric
distribution. Typically, the practitioner want a confidence interval for a statistical function
of interest s(x), such as the mean or the median. One of the best approach for dealing with
such unknown distributions is the bootstrap technique. The idea is to obtain the information
of interest by re-sampling (with replacement) a large number B of times from the observations
and to count the number of new samples that significantly deviate from the original obser-
vations. This technique is simple and robust, but straightforward implementation, such as
those given below for a simple illustration, may be less efficient than more advanced (boot-
strap) techniques. Reference books for bootstrap techniques are [Efron and Tibshirani (1993)]
and [Davison and Hinkley (2003)]. Here is a first way to proceed to obtain a confidence interval
for s(x).

• Generate B vectors xb, (b = 1, . . . , B) of size n by choosing each component randomly,
uniformly and with replacement among the observed values (x1, . . . , xn)

• Compute the values of interest s(x1), . . . , s(xB) for the B generated vectors and sort
them by increasing value.

• It is considered that s(x) has a probability 1 − 2α to belong to the interval [s1, s2] by
taking s1 = 100 ·αth percentile of the sorted s(xb) and s2 = 100 · (1−α)th percentile of
the sorted s(xb).

Practically, one can choose B = 2000 re-samples, α = 2.5%, s1 = 50th and s2 = 1950th
values of the sorted list. We see that this method is very simple and adapted to metaheuristic
practitioners who are familiar with simulation. Let us mention that this simple method gen-
erally not produces the narrowest possible interval and an interval that is centred on the value
of interest. Methods like BCa (bias corrected and accelerated bootstrap) or t-Bootstrap can
provide better confidence intervals with lower n and B. BCa is a little bit more complicated,
but still relatively easy to implement. If the symmetry of the distribution can be assumed,
permutation tests, that also work with re-sampling (but without replacement), seem to be
a [Good 2005] alternative.

5.3 Comparing the quality of two methods

In this section, we suppose that the practitioner has executed method A n times, observed
solutions qualities x = (x1, . . . , xn) and method B m times and observed the quantities y =
(y1, . . . , ym) It is supposed that the observations are independent, but the distribution functions
of methods A and B may differ. This case often arises in metaheuristic context. Typically the
practitioner is interested in knowing if the average quality of a method is different than the
average quality of the other. Answering this question can be done by comparing the confidence
intervals of both samples with the techniques described above. A more efficient technique, also
based on bootstrapping is the following:

• Compute:
the averages x̄ and ȳ of both samples,

Vienna, Austria, August 22–26, 2005



??-8 MIC2005: The Sixth Metaheuristics International Conference

the respective variances vx and vy,
the average z̄ of all the n + m observations,
the value tobs = t(x,y) = x̄−ȳ√

vx/n+vy/m
.

• Build vectors x′ and y′ with components x′
i = xi − x̄ + z̄ and y′i = yi − ȳ + z̄

• Generate B bootstrap samples xb and yb, (b = 1, . . . , B) with the modified x′ and y′

observations and compute the associated values t(xb,yb).

• The archived significance level is given by the number of bootstrap samples for which
t(xb,yb) ≤ tobs divided by B.

The reader can refer to [Hall (1992)] for further discussions and better bootstrap variants.
In order to obtain safe results, especially if a high confidence is needed, bootstrap techniques
may require heavy simulations and relatively large samples. If only small samples are available,
it is certainly more convenient to use a nonparametric test based on the ranks, such as the
Mann-Whitney test (see, e.g. [Conover (1999)]). Finally, let us mention that other techniques
exist for comparing more than 2 methods simultaneously. For instance, the analysis of variance
(ANOVA) can be used if we want to compare several algorithms on several instances, but we
have to make strong assumptions such as normality of the distribution of the samples. If such
assumptions cannot be done, then rank-based tests, such as Friedman test can be performed.
As noted above, the information provided by these tests can be deceptive for the practitioner
who wants to know which method is better than which other. In this case, multiple pairwise
comparisons must be performed, using for instance techniques quoted above.

1 10 100 1000 10000 100000 1000000

2000

4000

6000

8000

10000

12000

14000

16000

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

Robust Tabu Search

Reactive Tabu Search

90% confidence interval

Figure 2: Example of a diagram comparing the evolution of the objective function of two
methods with 90% confidence interval

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-9

6 Comparison of iterative methods

A simple way to compare iterative methods is to repeat a statistical test for each computational
effort. However, instead of accepting or rejecting the test with a given significance level α,
we suggest to consider the p-value, i.e. the probability to reject a true hypothesis. Moreover,
this allows providing graphical results that are easier to read. A first diagram can provide the
evolution of the solutions qualities as a function of computational effort (see Figure 2) and a
second diagram can provide the p-value associated to a statistical test comparing 2 methods
(see Figure 3).

A logarithmic scale helps the reader to represent the uncertainty in measuring the com-
putational effort. Figures 2 and 3 give examples of such diagrams, that can be automatically
generated through the web, by a software developped in our institute, available at the address
http://ina.eivd.ch/projects/stamp. The same link allows performing few of the statistical
tests presented above.

5 %

95 %

1 %

99 %

50 %

1 10 100 1000 10000 100000 1000000

Iteration

Figure 3: Example of a diagram providing the p-value for a method being better than another
(Mann-Whitney rank-based statistics). Note that the p-value is not plotted on a linear scale,
to be able to see the interesting portion between 1% and 5%.

References

[Arbuthnott(1710)] J. Arbuthnott, An argument for divine providence, taken from the con-
stant regularity observed in the births of both sexes. Philosophical Transactions, 27,
186–190.

[Conover (1999)] W. J. Conover, Practical Nonparametric Statistics, Wiley, Weinheim, third
edition.

[Davison and Hinkley (2003)] A. C. Davison, D.V. Hinkley Bootstrap Methods and their Ap-
plication, Cambridge University Press, 2003, 5th reprint.

[Dongarra (2005)] J.J. Dongarra, “Performances of various computers using standard linear
equation software”, Technical report CS-89-85, Univ. of Tennessee, Knoxville, USA.

[Efron and Tibshirani (1993)] B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap,
Chapman-Hall.

[Good 2005] P. Good. (2005): Permutation, Parametric, and Bootstrap Tests of Hypotheses.
Springer Verlag, New York. Third edition.

Vienna, Austria, August 22–26, 2005



??-10 MIC2005: The Sixth Metaheuristics International Conference

[Hall (1992)] P. Hall, The bootstrap and edgeworth expansions, Springer Verlag, New-York.

[Taillard (2003)] É. Taillard, “Heuristic Methods for Large Centroid Clustering Problems”,
Journal of Heuristics 9 (1), 51–73.

[Taillard et al. (2004)] É. Taillard, Ph. Waelti, J. Zuber “Few statistical tests for proportions
comparisons”. Technical Report, EIVD, 2004.

Vienna, Austria, August 22–26, 2005


