
A LINEARITHMIC HEURISTIC FOR THE TRAVELLING

SALESMAN PROBLEM

ÉRIC D. TAILLARD

Abstract. A linearithmic (n log n) randomized method based on POP-
MUSIC (Partial Optimization Metaheuristic Under Special Intensi�ca-
tion Conditions) is proposed for generating reasonably good solutions to
the travelling salesman problem. The method improves a previous work
with empirical algorithmic complexity in n1.6. The method has been
tested on instances with billions of cities. For a lot of problem instances
of the literature, a few dozens of runs are able to generate a very high
proportion of the edges of the best solutions known. This character-
istic is exploited in a new release of the Helsgaun's implementation of
the Lin-Kernighan heuristic (LKH) that is also able to produce rapidly
extremely good solutions for non-Euclidean instances. The practical
limits of the proposed method are discussed on a new type of problem
instances arising in a manufacturing process, especially in 3D extrusion
printing.

1. Introduction

The travelling salesman problem (TSP) and its variations is probably
the most studied NP-hard combinatorial optimisation problem (Voigt, 1832;
Punnen & Gutin, 2007; Cook, 2012; Cacchiani, Contreras-Bolton, & Toth,
2020; Ha, Deville, Pham, & Hà, 2020; Campbell, Corberán, Plana, Sanchis,
& Segura, 2021). Now, we are able to exactly solve instances up to several
thousands of cities and to �nd solutions for instances with millions of cities
at a fraction of a percent above the optimum (Applegate, Bixby, Chvátal, &
Cook, 1999; Applegate, Cook, & Rohe, 2003; Merz & Huhse, 2008; Helsgaun,
2009, 2016; Rego, Gamboa, Glover, & Osterman, 2011).
The work of Johnson and McGeoch (1997) has shown that the best heuris-

tic methods are local searches based on a neighbourhood proposed by Lin
and Kernighan (1973) (LK for short). This neighbourhood is based on a
chain of 2-opt moves, where two edges are replaced by two others. This
neighbourhood can be improved by considering k-opt moves, with k up to
5 (Helsgaun, 2009, 2016).
A key point for implementing a fast and e�cient local search is to use a

neighbourhood of limited size containing the pertinent moves (i.e. moves in-
volving only the edges of fairly good tours). Doing so, only a subset of moves
is evaluated for speeding-up the computation. A way to limit the number of
moves, is to generate a few dozens of di�erent TSP solutions of moderately
good quality with a fast randomized heuristic. Only the edges contained in

Key words and phrases. Travelling Salesman, Local search, POPMUSIC, Large-Scale
Optimization, Metaheuristics, 3D printing.
Accepted for publication in EJOR, May 20. 2021.

1

2 ÉRIC D. TAILLARD

these tours are considered for building moves. This technique for reducing
the complexity of the local search was called tour merging by Applegate,
Bixby, Chvátal, and Cook (2007). This article proposes a method with a
reduced algorithmic complexity for generating a limited subset of pertinent
edges that must be used in the solution tour. Previous works (Taillard, 2017;
Taillard & Helsgaun, 2019) proposed a 1-level decomposition method for gen-
erating good candidate edges. The empirical complexity of the method was
approximated with a function proportional to nα. The best estimate of α,
after one coma position, was found to be α ≈ 1.6.
The method proposed in this article is based on two main steps: �rst, an

initial tour is built with a recursive randomized procedure, with a linearith-
mic algorithmic complexity (n log n). This initial tour is then improved in
linear time with a fast POPMUSIC (Partial Optimisation Metaheuristic Un-
der Special Intensi�cation Conditions). Since the complexity of the method
is linearithmic, extremely large instances can be treated with a standard
personal computer. Experiments with more than 2 billion of cities are re-
ported for the �rst time. These massive datasets instances consider toroidal
distances in 2D. For such instances, the expected optimal solution length is
known (Johnson, McGeoch, & Rothberg, 1996). The deviation to the opti-
mal solution observed by the method proposed is about 10%, which is less
than the half of the deviation observed by the well-known nearest neighbour
greedy heuristics.
These positive results may be explained by the fact that a polynomial

approximation scheme exists for geometric instances (Arora, 1998). Very
shortly, the polynomial approximation scheme suggested by Arora (1998)
proceeds by decomposing TSP instances into a large number of �independent�
and smaller instances. The algorithm proposed in this article also exploits
instance decomposition.
To explore the limits of the proposed method, the last is tested on TSP

instances for which the distances are not purely geometric. First, instances of
clustered TSP (CTSP) have been transformed into standard TSP instances
by the technique consisting of adding an arbitrarily large constant M to
inter-cluster costs. It is known that the technique introduce a fair amount of
degeneracy in the problem (Laporte & Palekar, 2002). Despite this, 20 runs
of the method proposed in this article are able to �nd more than 99% of the
edges contained in the best solutions known for a classical CTSP data set.
The same number of runs of the nearest neighbour heuristic is able to �nd
less than 86% of these edges.
To build instances with a larger amount of degeneracy, a new application

occurring in 3D extrusion printing is proposed. It is shown that modelling
the problem of minimizing the unproductive moves of the extrusion head
as a TSP and solving this TSP with a state-of-the-art method (Helsgaun,
2018) can vastly improve the solutions reported in the literature (Volpato,
Galvão, Nunes, Souza, & Oguido, 2020). However, we have observed that
the proposed method cannot produce a reasonable solution to a 3D extrusion
printing instance with several hundred of layers expressed as a single TSP
instance with several hundred-thousands of cities.

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 3

The article is structured as follows: Section 2 presents the new n log n
heuristic for the TSP. Section 3 presents a �rst analysis of the method on
standard TSP. First, it is shown that the empirical complexity of the method
is linearithmic, as expected. Then the solution quality produced for very
large toroidal instances is analysed. Finally, it is shown that the method
generates a very large proportion of edges belonging to the best solution
tours. Section 4 introduces a TSP model for minimizing the unproductive
moves in production processes. Numerical results show that the model can
e�ciently solve this kind of problem with a good TSP solver. These instances
are also used to explain the limits of the new heuristic presented in this paper.
Conclusions and future research avenues are presented in the Section 5.

2. The linearithmic Heuristic for the TSP

The new heuristic proposed for �nding a tour on a set C of n cities is
decomposed in two phases. The �rst phase builds an initial path, including
all the cities of the instance by a recursive process. Then, in a second phase,
the initial tour is improved by a truncated POPMUSIC algorithm. The
Algorithm 1 gives a sketch of the new algorithm proposed. It calls two
procedures that are presented in the next sub-sections. These procedures
require both another procedure that is able to provide a very good path that
includes all the cities of a relatively small subset of cities. This procedure
can be either a local search based on LK neighbourhood, or a local search
based on a reduced set of 3-opt moves (this is the choice in the LKH 2.0.9
implementation (Helsgaun, 2018)) or any other optimisation procedure, even
an exact one, provided that it can deal with few hundreds of cities.

Algorithm 1: Overview of the fast heuristic proposed for the TSP.
Procedures ReorderPath and FastPopmusic are discussed in the next
sub-sections.
Data: Set C of n cities c1, . . . , cn, parameter t 6 n
Result: Tour T including all cities of C
Choose a random city ci ∈ C;1

P = ReorderPath((ci, . . . , ci−1, ci+1, . . . , ci), t);2

T = FastPopmusic(P, t2);3

For adapting POPMUSIC to the TSP, the choice was to optimise sub-
paths of an initial tour. One of the �special conditions� required by this
technique is that two portions of the initial tour, separated by many cities,
should not be interleaved. So, an appropriate procedure must be designed
for generating an initial solution meeting this condition.

2.1. Building an initial tour. For generating an initial tour that can be
further improved with a fast POPMUSIC algorithm, a city ci is randomly
chosen. Since the method is based on improving paths, a feasible TSP tour
can be seen as �nding a path beginning in ci and ending in ci. So, the
method starts with the path P = (b = ci, c1, . . . , ci−1, ci+1, . . . , cn, ci = e)
that de�nes a (random) feasible TSP tour.

4 ÉRIC D. TAILLARD

Figure 1. Illustration of Algorithm 2 on a small instance
(�rst 100 cities of Dimacs E1k.0). First call of the procedure,
with parameter t = 5. Path on a random sample (bold and
light line) and reordered path PS completed with all cities
before recursive calls of the procedure at line 12. Paths P1 to
P5 are drawn with di�erent colours and di�erent backgrounds
highlight them.

Let t be the only parameter of the method, not depending on n. A shown
in Section 3, a value of t between 10 and 20 is convenient. If not speci�ed
otherwise, the LKH 2.0.9 implementation takes t = 10.
If n ≤ t2, then a very good path passing once through all cities of P ,

beginning at city b and ending at city e can be found, for instance with a
local search using LK moves or even with an exact method. A good tour is
built and the method stops.
Else, if n > t2, a sample S of t cities is chosen by including in S:

• u ∈ C \ {b, e}, the city closest to b
• v ∈ C \ {b, e, u}, the city closest to e
• t− 2 other cities of C \ {b, e, u, v} randomly picked

A good path PS through all the cities of sample S, starting at city b and
ending at city e can be found with a local search or an exact method. Let
us rename the cities of S so that PS = b, s1, s2, . . . , st−1, st, e.
Path PS can be completed to contain all the cities of C by inserting them,

one after the others, just after the closest city of S. So, the completed path

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 5

Figure 2. Illustration of Algorithm 2. A �nal path that can
be returned by the algorithm on the instance of Figure 1.
The path P1 was recursively decomposed into t = 5 pieces.
The path on a sample of cities of P1 (plus the city preceding
P1 and the city s2 of P2) found at line 7 of the algorithm
is indicated by the bold and light line. The paths P2 to P5

contain no more than t2 = 25 cities and are directly opti-
mised.

PS = (b, s1, . . . , s2, . . . , st, . . . , e) improves the initial path P . Figure 1 gives
an example of PS .
At this step, the order of the cities in the completed path PS between

two cities sj and sj + 1 is arbitrary (as it was for P at the beginning of the
procedure). The sub-paths P1 = (b = s′1, . . . , s2), P2 = (s′2, . . . , s3), . . . , Pt =
(s′t, . . . , e = st+1) ⊂ PS can be further improved with t recursive calls of the
same procedure, where s′j is the city just preceding the �rst one of the path
Pj . The Algorithm 2 describes the process in details. Figure 2 gives the �nal
tour found by applying Algorithm 2 for a small instance.
When all recursions stop, the cities are ordered in such a way that the

TSP tour can be successfully improved with a POPMUSIC-based heuristic.
If t is considered as a �xed parameter (not depending on the problem size
n), the algorithmic complexity of this procedure is n log n.

2.2. Improving the initial tour with a fast POPMUSIC. In Taillard
(2017), POPMUSIC metaheuristic is adapted for the TSP by optimizing

6 ÉRIC D. TAILLARD

Algorithm 2: ReorderPath. Procedure to improve a path P . It re-
quires a procedure OptimisePath able to e�ciently �nd a good path for
instances containing less than t2 cities.
Data: Path P = (b, . . . , e), parameter t
Result: Path PS from b to e containing all cities of P reordered
if |P | 6 t2 then1

PS = OptimisePath(P)2

else3

Find u ∈ P \ {b, e}, the closest city to b;4

Find v ∈ P \ {b, e, u}, the closest city to e;5

Randomly select a sample S of t− 2 cities from P \ {b, e, u, v}6

S ← S ∪ {u, v};
PS = (b, s1, . . . , st, e) = OptimisePath((b, (S), e));7

for cj ∈ P, cj /∈ PS do8

Find the city s ∈ S the closest to cj ;9

Insert cj in PS just after s10

st+1 = e;11

for j ∈ {1, . . . , t} do12

s′j = city preceding sj in PS ;13

Pj = sub-path of PS from s′j to sj+1;14

Pj ← ReorderPath(Pj , t);15

In PS , replace the sub-path from s′j to sj+1 by Pj ;16

sub-paths containing R consecutive cities of the tour, where R is a param-
eter. The optimization procedure can be exactly the same as those used in
Algorithm 2. The optimizations are repeated until there is no subset of R
consecutive cities in the tour that can be improved.
For getting good candidate edges by the tour merging technique, we have

remarked that it is not required to run POPMUSIC until all sub-paths of
R consecutive cities have been optimised. Instead, we propose to speed up
the method by optimising the tour in 2 scans. A �rst scan optimizes dn/Re
non-overlapping sub-paths of R cities at most. Then, the tour is shifted
by bR/2c cities and a second scan optimises sub-paths involving about R/2
cities of two adjacent sub-paths of the �rst scan.
If R does not depend on n, then the algorithmic complexity of the im-

provement with the fast POPMUSIC is linear with n. To have a method with
a unique parameter, R can be set to t2. Figure 3 illustrates the improvement
of a solution with the fast POPMUSIC technique.

3. Computational results on classical TSP instances

The heuristic method proposed in this article was coded in C. The pro-
gramming style was purely sequential, so only one CPU core is used during
the runs. The personal computer used for the numerical experiments had an
AMD 1950X processor, 64GB of memory and operates on Linux (Xubuntu).

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 7

Figure 3. Improvement of the tour obtained with Algo-
rithm 2 with the fast POPMUSIC. Left: �rst scan of four in-
dependent paths (connected by their extremities only); right:
second scan shifted by 12 cities. Thin lines are the initial
paths and bold, light lines are the optimised paths.

The compiler was gcc and the code was compiled with -O4 optimisation
option.

3.1. Parameter setting. Intrinsically, the method has three parameters:
the maximum number of cities in a path pathmax for a direct optimisation of
the paths (Line 1 of Algorithm 2), the sample size t (Line 6 of Algorithm 2)
and the maximal number of cities R of the sub-paths optimised with the fast
POPMUSIC. Moreover, Algorithm 2 requires a procedure for optimising a
path between two �xed cities. For all the numerical results presented in this
paper, a local search based on LK moves has been used. This procedure is
a very basic one, implemented in less than 100 lines of C code. The same
procedure was used in our previous work (Taillard & Helsgaun, 2019).
Preliminary results have shown that the method is most sensitive to pa-

rameter R. The quality of the solutions produced increases with R, and so
do the computational time. The main goal of this work was to produce mod-
erately good solutions to TSP instances with a short computational time.
So, R should be set to a relatively small value. However, it is not pertinent
to set R to a value (much) smaller than pathmax. Indeed, there might be
portions of the tour produced with Algorithm 2 that have already been op-
timised with pathmax cities. Our choice was to set R = pathmax so that the
improvement of the tour with the fast POPMUSIC method is not marginal.
A path containing more than pathmax cities is split into t portions. On the

average, each portion will contain pathmax/t cities. The portions should not
be too small for producing pertinent edges, once optimised. Our choice was
to set pathmax = t2. The above considerations lead us to propose a method
with a single parameter t, implicitly �xing the value of the other parameters
to t2.
The method is �rst tested for empirically evaluating the relation between

the value t of the parameter, the instance size, the solution quality and

8 ÉRIC D. TAILLARD

Figure 4. Quality of the solutions (expressed in % above
expected optimum) produced by the method as a function
of parameter t for 2D toroidal instances. The size of the
instances varies from 2 · 104 to 1.6 · 109 cities.

the computational time. The largest problem instances commonly available
have a few millions of cities. To test the method on larger instances, we have
generated instances randomly on a unit square and used toroidal distances
(as if the square was folded so that opposite borders are contiguous). As
the asymptotic optimal length is known for such instances, it is possible to
evaluate the quality of the solutions produced by our method too.
Figure 4 gives the quality of the solutions produced by the method as a

function of parameter t for 2D toroidal uniform instances. We see in this
�gure that the deviation to optimum decreases quite fast from t = 5 to t = 15
and very slowly for t > 30. The quality of the solutions produced is quite
insensitive to the problem size.
Figure 5 gives the computational time of the method as a function of

parameter t for 2D toroidal uniform instances. We see in this �gure that the
computational time increases relatively fast with t. A good trade-o� between
computational time and solution quality is to choose the value of parameter
t between 10 and 20.

3.2. Computational times. The previous POPMUSIC implementation was
able to produce solutions to instances with 107 cities in about a couple of
hours of computational time (Taillard & Helsgaun, 2019). Most of the e�ort
for instances of this size was due to the building of the initial solution and not
for its further improvement with POPMUSIC. The previous implementation
used a 1-level decomposition. The size of the sample for decomposing the
problem depended on the instance size n. The dependence was a fractional
power carefully chosen according to the empirical complexity of the local
search so that the resulting complexity of the whole procedure is minimised.
The observed complexity of this previous implementation was about n1.6.

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 9

Figure 5. Computational time of the method as a function
of parameter t for 2D toroidal instances. The size of the
instances varies from 2 · 104 to 1.6 · 109 cities.

Figure 6. Computational time for producing one solution
as a function of problem size. The proposed method is run
with t = 15.

In the present work, the sample size does not depend on the instance
size. Therefore, a multi-level (log n) decomposition is needed. Another
di�erence is that POPMUSIC is truncated. There is no guarantee any more
that any sub-path of R cities is locally optimal. The time spent for the
improvement of the initial tour is still proportional to n as it was for the
previous implementation, but it is divided by a factor of 10 to 20.
Figure 6, provides the computational time of our method as a function of

the problem size for 2D toroidal instances. We provide the average time for
generating the initial solution and for improving it with the fast POPMUSIC

10 ÉRIC D. TAILLARD

with parameter t = 15. So, the total time of our method is the sum of these
times. This �gure also includes the computational time for generating a
tour and its improvement with the previous POPMUSIC implementation
as well as the time for the nearest neighbour greedy procedure. For the
nearest neighbour procedure and the fast POPMUSIC, min(1000, b 231

n1.5 +1c)
instances were considered for each number n of cities. This �gure shows
that:

• the empirical time for generating an initial solution is asymptotically
linearithmic, as predicted; the oscillations that can be observed for
small problem instances is due to transitions in recursion level; the
�rst, very clear transition occurs for t2 = 225 (from a direct optimi-
sation of the tour to a 1-level decomposition);
• the empirical time for improving the initial solution with an accel-
erated POPMUSIC is asymptotically linear; the non-monotonic in-
crease that can be observed for small instances is due to changes in
the number of cities in the sub-paths optimisation; for instance, up
to n = t2 there are two calls of the procedure for improving paths
with n cities and for n = t2 + 1, there are four calls of this procedure
for improving paths with n/2 cities;
• the previous POPMUSIC implementation, optimising sub-paths of
50 cities, is more than 10 times slower that the accelerated POPMU-
SIC;
• the empirical algorithmic complexity of the nearest neighbour heuris-
tic is very close to the Θ(n2) theoretical complexity.

The main limitation of our method is due to the memory required for
storing the problem data and the solution. Indeed, 2× 8 bytes are required
for storing the coordinates of a city (meaning 32GB for 231 ≈ 2 · 109 cities)
and a solution requires an array of 4 byte integers. In our implementation, a
temporary copy of the solution is needed as well as an array for storing the
assignment to the nearest city of the sample. So, at the �rst decomposition
level, 32GB + 231 · 3 · 4B = 56GB are required for a 2 billion cities instance.
Since a �small� amount of memory is required for the recursive calls, we
can conclude that the RAM of our personal computer was almost exhausted
� however, without requiring memory swaps on the hard disk.

3.3. Solution quality. The optimal solution length of randomly generated
instances in the unit square with toroidal distances in dimension D was
estimated as γD · n

D−1
D , with γ2 = 0.7124± 0.0002, γ3 = 0.698± 0.0003 and

γ4 = 0.7234± 0.0003 by Johnson et al. (1996).
For instances with D = 2, the quality of the solutions produced by the

nearest neighbour greedy procedure, by our method with t = 15 and by a
1-level recursion method with running time similar to our previous POPMU-
SIC implementation (setting t = R = 1.5 ·

√
n and maxpath = n− 1) is given

in Figure 7 .
This �gure shows that:

• for a �xed value of t, the quality of the initial solution �uctuates
around 16% above predicted optimum, with peaks near power of t;

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 11

Algorithm 2 Algorithm 1
D t n = t2 + 1 n� t2 n 6 t2 n = t2 + 1 n� t2

2 10 23.4 19.7 3.4 12.7 12.3
2 15 20.8 15.7 3.6 11.1 9.7
2 20 19.2 13.5 3.7 9.9 8.5
2 25 17.8 12.3 3.7 9.1 7.8
2 30 16.8 11.4 3.8 8.7 7.3
3 15 23.0 19.1 2.3 10.5 12.3
3 25 20.3 14.6 2.4 8.9 9.1
4 15 23.8 22.9 1.6 9.5 15.8
4 25 22.1 18.2 1.7 8.7 11.6

Table 1. Quality produced for di�erent parameter t and dif-
ferent dimensions of toroidal instances, expressed in % above
predicted optimum. For n 6 t2, the instance is directly solved
with a local search based on LK neighbourhood.

• for a value of t proportional to
√
n, the quality of the solution in-

creases with n;
• the deviation over expected optimum is quite stable after the im-
provement of the initial solution by the accelerated POPMUSIC; this
deviation stays between 8% and 11% over the expected optimum (a
quality similar to our previous POPMUSIC implementation);
• the nearest neighbour procedure produces solutions at 21.96± 0.3%
above predicted optimum for problem instances above 30,000 cities.

Table 1 provides the average solution quality for toroidal instances. The
�rst column gives the dimensionD of the instances. The second column gives
the value of parameter t. The next two columns gives the quality provided
by the Algorithm 2 (initial solution). On the one hand is provided the results
for the worst case for this algorithm, when n is just above t2. On the other
hand is given the asymptotic behaviour observed for very large sizes. The
last tree columns gives the results of the proposed method. First is given
the average deviation over expected optimum observed for instances of size
varying between n = 100 and n = t2. For such sizes, no recursive call occurs
in Algorithm 2 and the results correspond to the quality provided by the
OptimisePath procedure. Then are the results when the proposed method
has a single recursive call (n = t2 + 1) and �nally the asymptotic results for
very large sizes.

3.4. Generating candidate edges with tour merging. The main pur-
pose of the proposed method is for producing good candidate edges for a
more elaborated local search. It is now time to analyse the ability of the
method to reach this goal. For this purpose, a few classical instances of the
literature for which excellent solutions are known have been considered. The
size of these instances ranges from 104 to 744, 710.
In Figure 8, we give, as a function of the number of runs of our method,

the proportion of edges that are in the best solution known but that have
not been produced by our method. We see in this �gure that the union of

12 ÉRIC D. TAILLARD

Figure 7. Quality of solutions (expressed in % above ex-
pected optimum) as a function of problem size. Uniformly
distributed cities with toroidal distances in 2D. Larger and
darker symbols identify the 5 typical measures given in Ta-
ble 1 (line with D = 2 and t = 15).

Figure 8. Proportion of missing edges as a function of the
number of fast POPMUSIC solutions generated (with t =
15).

50 solutions produced by the method contains more than 99.9% of the edges
of the best solution known.
So, the proposed method is a very e�cient one to generate good can-

didate edges by tour merging. The new algorithm has been integrated in
the LKH TSP solver since version 2.0.9. The generation of candidate edges
with the method proposed in this article can be enabled with the parame-
ter CANDIDATE_SET_TYPE = POPMUSIC. The technical report provides more

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 13

Figure 9. Clustered TSP: Median proportion of missing
edges as a function of the number of solutions generated. The
nearest neighbour heuristic starts from a random city. The
shaded zones indicate the 0�100, 5�95, 15�85 and 25�75 per-
centiles.

details about the solution quality and computational time of LKH TSP soft-
ware when enabling this parameter (Helsgaun, 2018).
A criticism of these results can be that, although dealing with instances

of various sizes, they are all based on geometrical distances.
So, the method must be tested on instances with quite di�erent distance

measures. For this purpose, the clustered TSP (CTSP) is considered. In the
CTSP, each city is associated with a given cluster. All the cities of a cluster
must be visited before going to a city associated with another cluster. The
CTSP can be transformed into a standard TSP by adding an arbitrarily large
constant M to inter-cluster costs. So, if the true distance between cities i
and j is dij , the distance in the TSP model is dij + M if i and j belong to
di�erent clusters. Adding M at each departure of a cluster implies that an
optimal TSP tour must visit all the cities of a cluster before going to a city
of another cluster. So, an optimal TSP tour de�nes a feasible CTSP tour.
If the CTSP has m clusters, then the corresponding TSP optimal solution
value is mM above the CTSP one.
A classical data set of 65 CTSP instances has been considered. The size

of these instances ranges from 200 to 71, 009. Very good solutions for these
instances are available (Helsgaun, 2014). In Figure 9, we give the proportion
of missing edges as a function of the number of runs of our method and the
nearest neighbour heuristic starting from a random city. We see in this �gure
that 20 runs of our method are able to �nd more than 99% of the edges of
the best solutions while 100 runs of nearest neighbour �nd only 90% of them.
We can conclude that repeated runs of our method is able to generate a

very good proportion of edges appearing in excellent CTSP solutions. Let

14 ÉRIC D. TAILLARD

us mention that the nearest neighbour heuristic always �nds a CTSP feasi-
ble solution. This contrasts with our method that may produce unfeasible
CTSP solutions. For ensuring the production of feasible CTSP solutions,
our method should be modi�ed by enforcing the selection of one city from
each cluster at the �rst sampling.
The time complexity of the nearest neighbour heuristic is Θ(n2). It is

slightly faster than our method for problem instances with n = 1000 cities
but 30 slower for the largest instance with n = 71, 009 cities.

4. TSP model for optimising unproductive moves in

manufacturing

This section presents a way to model the optimisation of unproductive
moves in an additive manufacturing process as a TSP. The problem occurs
in the production of 3D pieces with extrusion printers. Figure 10 shows such
a piece. The di�erent colors represent di�erent types of extrusion: external
surface, �lling, etc.
A piece that must be produced with a 3D printer is �rst sliced horizontally

into a number of layers. The printer prints one layer after the other. Once
a layer is printed, the head (or the support of the piece) is shifted vertically
from a distance corresponding to the thickness of a layer. Then, the next
layer is printed.
Practically, a layer is composed by a number of segments that must be

extruded. One of these segments is speci�ed by the (x, y) coordinates of
its extremities and other parameters such as the print speed, the extrusion
quantity, the geometry of the segment (straight line, arc) and the type (con-
tour, �lling). A layer may be decomposed into sub-layers, for instance, if all
the contour segments must be printed before the �lling ones.
The problem for a (sub-) layer is to decide in which order printing each

segment and which is the start extremity and the end extremity of each
segment. If the coordinates of the end extremity of a segment are not the
same as those of the start extremity of the next one, the extrusion head
must perform a non-productive jump in the air. The non-productive moves
may represent a signi�cant proportion of the head moves. For instance, in
Figure 11, the length of non-productive moves of a layer generated by the
PrusaSlicer software is more than 20% of the length of the productive moves.
For some pieces, the time consumed in non-productive moves can be higher

than the time for productive ones. Therefore, it is important to determine
an order and a direction for each segment that minimises the time of non-
productive moves.
For modelling the minimisation of non-productive time as a TSP, we pro-

pose to introduce 3 cities for each segment. Let a, b, c be the cities associated
with a segment and e, f, g the cities associated with another segment. The

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 15

TSP distance matrix D between these 6 cities can be de�ned as

D =

− 0 M dae + p M dag + p
0 − 0 M M M
M 0 − dce + p M dcg + p

dea + p M dec + p − 0 M
M M M 0 − 0

dga + p M dgc + p M 0 −

where dij is the Euclidean distance between the extremity i of a segment and
j the extremity of another one, M is a relatively large value (e.g. 100 times
the largest distance between 2 points of the printed piece) and p a penalty.
Penalty p is equal to:

• 0 if both segments belong to the same layer
• M/10 if both segments belong to adjacent layers
• M if both segments belong to non-adjacent layers

To complete the model, a dummy city is added. The dummy city is located
at the initial position of the extrusion head. The distance of this dummy
city to all the others is M , but excepted for the extremities of the segments
of the �rst and last layer.
Printing a segment means going from one of its extremities to the other.

This is ensured in our TSP model for an optimal tour by the fact that the
only short connections to the middle city associated with a segment (in the
preceding example, the city b or the city f) are precisely the extremities of
the segment. All other cities are very far away from the middle city.
A feasible solution for 3D printing must print all the segments of a layer

before starting the next layer. This is ensured in our TSP model by the
penalty p that has to be paid in addition to the distance between the ex-
tremities of two distinct segments. No penalty is paid if both segments
belong to the same layer (accounting therefore the unproductive jump dis-
tance). A modest penalty is paid if both segments belong to adjacent layers.
This corresponds to the inter-cluster penalty when transforming the CTSP
into a TSP. This ensures to entirely print a layer before going to the next
one. Finally, a large penalty is paid if both segments belong to di�erent
layers that are not adjacent. This ensures to print the layers in the right
order (or completely in reverse order, since the TSP is symmetric).
To validate this model, we have built a TSP instance of 5 successive layers

for the piece shown in Figure 10 and we have found a good TSP solution
with LKH 2.0.9. Figure 12 illustrates the movements of the extrusion head
for the same layer as Figure 11 with non-productive moves put in evidence.
Compared to the PrusaSlicer solution, the non-productive moves have been
diminished by 89% for this layer. For the whole piece, the non-productive
moves can be diminished nearly by 75%.
We have remarked that the TSP instances modelling 3D extrusion print-

ing are relatively harder to solve than instances of classical benchmarks.
Indeed, even in small instances with few hundreds of cities, LKH 2.0.9 was
unable to provide optimal solutions when running with standard parameter
values. However, good solutions can be repeatedly found by increasing the

16 ÉRIC D. TAILLARD

Figure 10. Piece of a bicycle headlamp as shown in the
PrusaSlicer software.

Figure 11. A layer of a 3D extrusion printing generated
by PrusaSlicer. The darker segments are the unproductive
jumps. The total length of these jumps for this layer is about
740.8 mm.

number of candidate edges connecting each city from 5 (standard value) to
MAX_CANDIDATES = 10.
We have tested the LKH TSP solver on 3D extrusion instances proposed

by Volpato et al. (2020). This test-bed includes eight di�erent parts. The

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 17

Figure 12. A layer of a 3D extrusion printing optimised
with a TSP model. The total length of unproductive jumps
for this layer is about 84.5 mm.

Instance 1 2 3 4 5 6 7 8
Size 4338 5427 4503 3669 13359 6606 6066 10872

Di�erence (%) -0.4 0.6 0.7 0.7 -0.8 0.1 1.4 0.9
Table 2. Improvement in unproductive move length of LKH
TSP solver when enabling CANDIDATE_SET_TYPE = POPMUSIC

parameter. Extrusion head cleaned every two layers. Positive
values indicate LKH produces better solutions with POPMU-
SIC candidates.

layers of these instances are decomposed into two sub-layers: contour and
raster �lling.
For 3D printing instances, the distance data must be given explicitly in

LKH TSP solver. So, to limit the size of the instances, we have considered
only the instances where the extrusion head must be cleaned every two layers.
Since the head is cleaned at a given position, the problem can be decomposed
into independent instances containing only two layers. Table 2 provides the
relative di�erence (%) of unproductive length when the LKH TSP solver
is run with CANDIDATE_SET_TYPE = POPMUSIC parameter. We see in this
table that the in�uence of the candidate edges set selection procedure is not
signi�cant for such instances.
The Figure 13 illustrates two layers of a solution obtained by a TSP model.

Note that the instance is not provided with the detailed zigzag path for raster
�lling. The lasts are merely given by a single segment, drawn with a straight
line in this �gure.
The constraint of printing all the contour segments (close loop) before

�lling the solid parts is somewhat arbitrary. So, we have generated detailed

18 ÉRIC D. TAILLARD

Figure 13. Solution found for instance 4 of Volpato et al.
with head cleaning every two layers. Darker lines identify
non-productive moves.

Figure 14. Solution found for raster �lling of instance 4 of
Volpato et al. Head cleaning every two layers. Darker lines
identify non-productive moves.

�lling segments (crossing at 90° from one layer to the next) for the parts
corresponding to the instances of Volpato et al. (2020). The instances are
solved by taking into account the raster �lling only. The rationale is that
the �rst time the head crosses a contour segment, it can print the contour
before printing the raster segment without an increase in the length of non-
productive moves. All the raster segments generated for a layer are parallel
and disjoints. So, connecting all of them implies non-productive moves whose
length is near half the contour length.
The Figure 14 illustrates the solution obtained for the same part as the

Figure 13.
Two ad-hoc heuristic methods are proposed in Volpato et al. (2020) for

solving the minimisation of unproductive moves in 3D extrusion printing.
These methods are shown to improve the repositioning distance of the ex-
trusion head by 43% to 63%. Table 3 reports the reduction in path length

A LINEARITHMIC HEURISTIC FOR THE TRAVELLING SALESMAN PROBLEM 19

Instance 1 2 3 4 5 6 7 8
Size 2574 2997 3159 3516 6696 4122 6834 6513

Method 1 8.8 30.2 24.0 4.6 38.9 20.8 24.3 11.7
Method 2 6.9 24.6 22.4 1.4 29.7 11.4 15.6 9.6
Table 3. Relative improvement of the length of non-
productive moves (%) by solving a raster-�lling TSP model
with LKH TSP solver compared to Method 1 and 2 of Vol-
pato et al. Extrusion head cleaned every two layers. The new
TSP model produces better solutions for all instances.

(%) compared to methods 1 and 2 of Volpato et al. (2020). We see that
the improvements can be relatively substantial for most of the parts. For
Instance 4, the improvement is not that important, which may be surprising
while comparing the reposition moves of �gures 13 and 14. This is due to
the fact that the length connecting two raster segments is taken into account
in the raster �lling model while it is not taken into account in the contour
+ zigzag raster �lling.
The TSP instances deriving from 3D extrusion printing are pathological

for the fast heuristic proposed in this article. Acceptable solutions were
obtained when the number of layers is limited, but this is not true with hun-
dreds of layers (and several hundred-thousands of cities). An explanation is
that the decomposition process is not accurate when the number of layers is
large. Indeed, 1/3 of the cities, corresponding to �middle� of segments, are
connected with the same distance, M , to all the other cities but excepted
for the extremities of the segment. So, at line 9 of the Algorithm 2, most
of the cities are inserted after an arbitrary city of the sample (in our imple-
mentation: the �rst of the sample). The resulting tour does not respect the
constraint that all the segments of a layer must be printed before printing
the next layer. This explains the counter performance of our method for this
type of instances.
Notice that good solutions are not di�cult to obtain. A POPMUSIC

method optimising a few layers at a time works well, as soon as the initial
solution is already partially sorted, with all the points of a layer being placed
before the points of the next layer. For instance, the results presented in
Tables 2 and 3 were obtained with a relatively limited computational e�ort
by exploiting the fact that the head has to go to a cleaning point every two
layers. So, it is possible to solve a few hundred of small, independent TSP
instances instead of a single, large one.

5. Conclusion

This work proposes a method for generating moderately good TSP so-
lutions in n log n. The method does not require assumptions about the
problem structure. For the �rst time, to our knowledge, instances with more
than 2 billion of cities have been tackled with a metaheuristic. The method
can be used for generating good candidate edges for advanced local searches.
It is shown on classical TSP and CTSP instances in the literature that a
high proportion of the edges of the best solutions known can be obtained

20 ÉRIC D. TAILLARD

with a few dozens of runs of our method. The LKH TSP Solver release 2.0.9
includes the proposed method for generating candidate edges sets.
Since the method evaluates the distance between a limited set of city pairs,

it is evident that pathological instances exist for this method. The article in-
troduces a new way to model a manufacturing process under a standard TSP.
It is analysed why large TSP instances derived from this additive manufac-
turing process are ill-conditioned. Experiments with 3D printing instances
containing few layers show that important production gains are still possible,
compared to methods recently proposed.
Future works should study how to solve more e�ciently and faster these

TSP instances. Indeed, additive manufacturing is increasingly used, but the
process is quite slow. Printing a single part can take several hours. The
proportion of the time spent by the printing head in non-productive moves
can be signi�cant.

Acknowledgement

This research was partially supported by the Swiss National Science Foun-
dation, project 200021_169085. The author thanks anonymous reviewers
who help to improve the quality of the paper.

References

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (1999). Con-
corde: A code for solving Traveling Salesman Problems. Retrieved from
http://www.math.princeton.edu/tsp/concorde.html

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2007). The
Traveling Salesman Problem: A Computational Study. Princeton, NJ,
USA: Princeton University Press.

Applegate, D. L., Cook, W., & Rohe, A. (2003). Chained Lin-Kernighan for
Large Traveling Salesman Problems. INFORMS Journal on Comput-
ing , 15 (1), 82-92. doi: 10.1287/ijoc.15.1.82.15157

Arora, S. (1998, September). Polynomial Time Approximation Schemes
for Euclidean Traveling Salesman and Other Geometric Problems. J.
ACM , 45 (5), 753�782. doi: 10.1145/290179.290180

Cacchiani, V., Contreras-Bolton, C., & Toth, P. (2020). Models and Al-
gorithms for the Traveling Salesman Problem with Time-dependent
Service times. European Journal of Operational Research, 283 (3), 825-
843. doi: https://doi.org/10.1016/j.ejor.2019.11.046

Campbell, J. F., Corberán, Á., Plana, I., Sanchis, J. M., & Segura, P.
(2021). Solving the Length constrained K-Drones Rural Postman Prob-
lem. European Journal of Operational Research, 292 (1), 60-72. doi:
https://doi.org/10.1016/j.ejor.2020.10.035

Cook, W. J. (2012). In Pursuit of the Traveling Salesman: Mathematics at
the Limits of Computation. Princeton University Press.

Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2020). A Hybrid Genetic
Algorithm for the Traveling Salesman Problem with Drone. Journal
of Heuristics, 26 (2), 219�247. doi: 10.1007/s10732-019-09431-y

Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP
heuristic. Mathematical Programming Computation, 1 .

References 21

Helsgaun, K. (2014). Best known solutions
to DIMACS TSP instances. Retrieved from
http://www.akira.ruc.dk/~keld/research/LKH/DIMACS_results.html

(Last updated: October 6, 2014)
Helsgaun, K. (2016). Helsgaun's implementation of Lin-Kernighan. Re-

trieved from http://webhotel4.ruc.dk/~keld/research/LKH/ (Ver-
sion LKH-2.0.7)

Helsgaun, K. (2018). Using POPMUSIC for Candidate Set Generation in
the Lin-Kernighan-Helsgaun TSP Solver (Tech. Rep.). Department of
Computer Science, Roskilde University, DK-4000 Roskilde, Denmark.

Johnson, D. S., & McGeoch, L. A. (1997). The Traveling Salesman Problem:
A Case Study. In E. Aarts & J. K. Lenstra (Eds.), Local Search in
Combinatorial Optimization (pp. 215�310). Wiley.

Johnson, D. S., McGeoch, L. A., & Rothberg, E. E. (1996). Asymptotic
Experimental Analysis for the Held-Karp Traveling Salesman bound.
In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (pp. 341�350).

Laporte, G., & Palekar, U. (2002). Some Applications of the Clustered
Travelling Salesman Problem. The Journal of the Operational Research
Society , 53 (9), 972�976.

Lin, S., & Kernighan, B. W. (1973). An E�ective Heuristic Algorithm for the
Traveling-Salesman Problem. Operations Research, 21 (2), 498�516.

Merz, P., & Huhse, J. (2008). An Iterated Local Search Approach for
Finding Provably Good Solutions for Very Large TSP Instances. In
G. Rudolph, T. Jansen, N. Beume, S. Lucas, & C. Poloni (Eds.), Par-
allel Problem Solving from Nature � PPSN X (pp. 929�939). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-87700-
4_92

Punnen, A. P., & Gutin, G. (2007). The Traveling Salesman Problem and
Its Variations (1st ed.). Springer US.

Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling Sales-
man Problem heuristics: Leading methods, implementations and lat-
est advances. European Journal of Operational Research, 211 (3), 427
- 441. doi: https://doi.org/10.1016/j.ejor.2010.09.010

Taillard, É. D. (2017). TSP Neighbourhood Reduction with POPMUSIC.
In Metaheuristic International Conference (MIC'17) Proceedings (pp.
237�240).

Taillard, É. D., & Helsgaun, K. (2019). POPMUSIC for the Travelling
Salesman Problem. EURO Journal of Operational Research, 272 (2),
420�429. doi: 10.1016/j.ejor.2018.06.039

Voigt (Ed.). (1832). Der Handlungsreisende wie er sein soll und was er
zu thun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs
in seinen Geschäften gewiÿ zu sein ; Mit einem Titelkupf. Ilmenau,
Germany: Voigt.

Volpato, N., Galvão, L. C., Nunes, L. F., Souza, R. I., & Oguido, K. (2020).
Combining heuristics for tool-path optimisation in material extrusion
additive manufacturing. Journal of the Operational Research Society ,
71 (6), 867�877. doi: 10.1080/01605682.2019.1590135

22 References

(Éric D. Taillard) HEIG-VD, Case postale 521, Department of Information

Technology, University of Applied Sciences of Western Switzerland, Route

de Cheseaux 1, CH-1401 Yverdon, Switzerland.

