
1

Adaptive Memories for the Quadratic Assignment Problem

ÉRIC D. TAILLARD, LUCA M. GAMBARDELLA
IDSIA, CORSO ELVEZIA 36, CH-6900 LUGANO, SWITZERLAND.

{ERIC, LUCA}@IDSIA.CH
IDSIA–87–97 TECHNICAL REPORT

Abstract.

The paper proposes, compares and analyses different memory-based meta-heuristics for the

quadratic assignment problem (QAP). Two of these methods (FANT and GDH) are new while two

others (HAS-QAP and GTSH) are among the best for structured QAP instances. These methods are

based on ant systems and genetic algorithms and they are presented under a unified general scheme,

called adaptive memory programming (AMP). However, they use different types of memory and

different improving procedures. Two new memoryless methods (VNS-QAP and RVNS-QAP)

based on variable neighbourhood search are also proposed and compared with adaptive memory

procedures.

Key words: Quadratic assignment, adaptive memory programming, ant system, genetic algorithm.

1. Introduction.

1.1. Adaptive Memory Programming.

The concept of adaptive memory programming (AMP) has been proposed for grouping a

number of generic optimization techniques for combinatorial problems. Among these techniques,

let us mention genetic algorithms, taboo search and ant systems. Some of these approaches have

been proposed for a long time and have been improved and modified a lot since their first proposi-

tion. As shown in Taillard et al. (1997) overview paper, the evolution of these techniques has been

done in the way of a mutual rapprochement and it becomes difficult to classify a given method in a

precise category. Indeed, recent and efficient methods often merge components of many techniques

(see, e. g. Fleurent & Ferland (1994), Cung et al. (1997), Gambardella, Taillard & Dorigo (1997),

Stützle & Hoos (1997) for applications to the quadratic assignment problem). A number of the best

performing heuristic methods are driven by the same common features that are the use of memory

and a local search procedure. So, we propose to group and unify all these approaches under the term

of AMP, standing for adaptive memory programming (or adaptive memory procedure, depending

on the context) that is perfectly adapted for such a learning process. Very shortly, an AMP works as

follows: a new solution of the problem is constructed by first creating an intermediate solution

using informations contained in the memory and then this intermediate solution is improved with a

2

local search procedure. Finally, the improved solution is used to update the memory and the process

is iterated. The general scheme of an AMP is given in Figure 1.

1)Initialise the memory.

2)Repeat, until a stop criterion is satisfied:

2a)Construct a new provisory solution, using the information
contained in the memory.

2b)Improve the provisory solution with a local search.
2c)Update the memory.

Figure 1 : General scheme of an adaptive memory programme.

Starting from this general scheme, it is possible to define various methods, depending on the

memory implementation, the constructive procedure, the improving method and the memory updat-

ing process. Table 1 provides the main components of the methods discussed in the paper: their

name, reference in which they have been proposed, memory implementation, intermediate solution

generator and improving procedure.

This paper present two new AMPs for the quadratic assignment problem (QAP). The first one,

referred as FANT in the following, is based on the principle of ant colonies (Dorigo, Maniezzo and

Colorni, 1991, Dorigo, 1992) for memory management and intermediate solution generator and is

hybridised with a fast local search presented in this paper. The second AMP proposed in this paper,

GDH, is a genetic algorithm that uses the cross-over operator of Tate and Smith (1995) for generat-

ing intermediate solutions and the same fast local search as FANT as improving procedure.

These new methods are compared with two among the best (AMP) methods developed for the

QAP: The genetic-taboo search hybrid algorithm of Fleurent and Ferland (GTSH, 1994) and the

hybrid ant system of Gambardella, Taillard and Dorigo (HAS-QAP, 1997), also based on a combi-

nation of ant systems and a fast local search. The new AMPs proposed in this paper are shown to be

among the best methods for solving structured instances of QAP that derives form practical applica-

tions, where the data matrices describing the problem have very variable entries. For instances

Name FANT HAS-QAP GDH GTSH VNS-QAP RVNS-QAP

Reference This paper
Gambardella,

Taillard &
Dorigo (1997)

This paper
Fleurent &

Ferland
(1994)

This paper This paper

Memory
Statistics
matrix on
solutions

Statistics and
population of

solutions

Population
of solutions

Population
of solutions

None None

Generator
Construc-

tive

Local modifi-
cations of solu-

tions
Cross-over Cross-over

Random
jump

Random
jump

Improving
procedure

Fast local
search

Fast local
search

Fast local
search

Taboo
search

Fast local
search

None

Table 1 : Overview of the basic working principles of the methods studied in this paper.

3

where the matrix entries are more uniform, there exist taboo searches, as those of Battiti and Tec-

chiolli (1994) or Taillard (1991) that are more competitive, as clearly shown in Taillard (1994) and

Gambardella, Taillard and Dorigo (1997). So, we concentrate our analysis on structured problems

for which a learning phenomenon can effectively be observed.

In order to understand the importance of the memory component, we also propose two memo-

ryless methods (VNS-QAP and RVNS-QAP) that are based on variable neighbourhood search

(Hansen and Mladenovic, 1997). We consider a standard VNS that incorporates the fast improving

method used in the AMPs, and RVNS, a reduced variant that does not apply this improving method.

RVNS is able to perform a number of iterations O(n2) larger than VNS in the same amount of time

(for a problem of size n). This is the first time that VNS is applied to the QAP.

1.2 The quadratic assignment problem (QAP).

The QAP is a combinatorial optimization problem stated for the first time by Koopmans and

Beckman in 1957. It can be described as follows: Given two n × n matrices (aij) and (bij), find a per-

mutation π* minimising:

We denote by Π(n) the set of permutations of n elements. Shani and Gonzalez (1976) have

shown that the problem is NP-hard and that there is no ε-approximation algorithm for the QAP

unless P = NP. While few combinatorial optimization problems can be exactly solved for relatively

large instances, as exemplified by the travelling salesman problem, QAP instances of size larger

than 20 are considered intractable. In practice, a large number of real world problems lead to QAP

instances of considerable size that cannot be solved exactly. For example, an application in image

processing requires to solve more than 100 problems of size n = 256 (Taillard, 1994). In the present

paper, we report new best solution values for a number of these large instances.

The paper is structured as follows: Section 2 presents the fundamentals of ant systems and our

new FANT method for the QAP. This section will also review the HAS-QAP method of Gam-

bardella, Taillard and Dorigo (1997). Section 3 presents the fundamentals of genetic algorithms and

our new GDH method, as well as the GTSH method of Fleurent and Ferland (1994). These four

methods will be presented under the AMP perspective: According to the general frame of AMP

shown in Figure 1, an AMP implementation can be specified by four components:

a) The memory structure.

b) A procedure for building a provisory solution.

c) A procedure for improving the provisory solution.

d) The way the memory is updated.

min
π Π n()∈

f π() aijbπiπj

j 1=

n

∑
i 1=

n

∑=

4

We are going to describe the AMP methods by specifying the choices made for implementing

these four components. Section 4 presents the fundamentals of variable neighbourhood search and

our new VNS-QAP and RVNS-QAP methods. Finally, Section 5 analyses and discusses the numer-

ical performances of all these methods.

2. Ant systems.

The origin of ant systems is to imitate the behaviour of ants searching for food. This meta-heu-

ristic has been proposed by Dorigo, Maniezzo and Colorni (1991) and Dorigo (1992). Ants are find-

ing sources of food in the following way: First, they explore the area surrounding their nest in a

random manner. While they are moving, the ants left a pheromone (chemical trace) on the floor, in

such a way that they can find their way back to the nest. When they find a source of food, the ants

bring food back to the nest following the pheromone traces, leaving additional pheromone during

the return trip. After a while, the paths between the nest and sources of food will be indicated by an

amount of pheromone in relation with the length of the path. Indeed, short paths will be travelled at

an higher rate than long ones and the amount of pheromone will grow faster on the short ways.

Therefore, the ants are able to optimize their paths by this process.

A similar process can be transposed to combinatorial optimization: solutions of the problem

are built using a statistics on solutions previously generated. This statistics play the rôle of the pher-

omone traces and it gives an higher weight to the best solutions. After a while, it is observed that

such a procedure is able to build solutions of better quality than a procedure guided by partial

objective function evaluations only.

2.1 FANT: Fast ant system for the QAP.

Now, let us see how an ant system can be implemented for the QAP in practice. Our FANT

method presents however a number of differences regarding to basic ant systems as described by

Dorigo, Maniezzo and Colorni (1991). First, we have added a local search for improving the solu-

tion built by the ant. This has been identified as very promising for other problems such as the trav-

elling salesman problem (Dorigo and Gambardella, 1997) or the sequential ordering problem

(Gambardella and Dorigo, 1997).

Another difference is the statistics that is computed. Indeed, this statistics gives more and more

weight to the best solution found so far as the search progresses. This makes the search to converge

faster to good solutions. However, this may also causes the search to be trapped in local optima. In

order to avoid this situation, a diversification mechanism that reset the memory has been developed.

Finally, FANT does not use a population of artificial agents.

5

Let us now present the FANT method under the AMP perspective, i. e. by specifying its four

components: The memory structure, the constructing procedure, the improving procedure and the

way the memory is updated.

a) Memory implementation.

The basic idea of our method is to evaluate a priori the interest of setting πi = j in a solution

(= permutation) π. Therefore, our memory is principally constituted by a matrix Τ of size n × n

whose entry τij measures the preference of setting πi = j.

From an ant system point of view, this matrix represents the pheromone trail left by the ants.

The entries of this matrix consist in a statistics derived from the solution previously generated by

the search process.

b) Generation of a provisory solution.

For generating a provisory solution µ, we use a constructive method that chooses the elements

of µ successively, in a random order and with a probability proportional to the values contained in

the Τ matrix. More formally, the constructive method is presented in Figure 2:

1)I = ∅ , J = ∅
2)While I < n repeat:

2a)Choose i, randomly, uniformly, 1 ≤ i ≤ n, i ∉ I.
2b)Choose j, randomly, 1 ≤ j ≤ n, j ∉ J, with

probability and set µi = j.

2c)I = I ∪ {i}, J = J ∪ {j}

Figure 2 : Construction of a provisory solution.

c) Improvement procedure.

The provisory solution µ generated at the previous step is not so good, generally; at the first

iteration, µ is just a random permutation. So, we apply to µ the first steps of a first improving neigh-

bour procedure. More formally, we repeat the procedure of Figure 3 twice, where ∆(π, i, j) is the

difference in the objective function value when exchanging the elements πi and πj in π.

1)I = ∅ .

2)While I < n repeat:

2a)Choose i, randomly, uniformly, 1 ≤ i ≤ n, i ∉ I.
2b)J = {i}
2c)While J < n repeat:

2c1)Choose j, randomly,1 ≤ j ≤ n, j ∉ J.
2c2)If ∆(π,i,j) < 0, exchange πi and πj in π.
2c3)J = J ∪ {j}

2d)I = I ∪ {i}.

Figure 3 : Fast descent procedure (to be repeated twice).

τ ij τ ik
1 k n k J∉,≤ ≤

∑⁄

6

The evaluation of ∆(π, i, j) can be performed in O(n) using the formula:

Therefore this procedure can be executed in O(n3); it does not necessarily returns a local

optimum, but it is fast and may produce different solutions when starting with the same initial, not

locally optimal solution. From now on, we are going to call π the improved solution.

d) Memory updates.

The statistics the memory stores uses two parameters, r and r*, that represent the re-enforce-

ment of the matrix entries corresponding to the solution produced at step 2c of the AMP and,

respectively, π*, the best solution produced by the algorithm. During the entire process, we set

r* = 4 while r may vary. At the beginning r = 1 and we set τij = r, 1 ≤ i, j ≤ n, meaning that the

memory does not contain any information initially. Usually, the entries of matrix Τ are updated as

follows:

1)For i = 1 to n do:

1a) = + r

1b) = + r*

Where π is the solution produced at the current iteration and π* the best solution produced so

far. In two cases, this update is done in another way:

1) If π* has been improved, then r is reset to 1 and all the entries of Τ are set to 1. The aim of

this resetting is to intensify the search around π* by giving less importance to the past of the search.

2) If the provisory solution µ generated at step 2b is equal to π*, then r is increased by one unit

and all the entries of Τ are set to r. This situation occurs when π* has not been improved for a large

number of iterations, meaning that the re-enforcement of the entries corresponding to π* is too

high. The aim of this is to diversify the search when the information contained in Τ is not very dif-

ferent from π*.

Now, let us review a completely different way of implementing an ant system for the QAP that

has been proposed by Gambardella, Taillard and Dorigo (1997).

2. 2. HAS-QAP: Hybrid ant system for the QAP.

The method of Gambardella, Taillard and Dorigo (1997), called HAS-QAP for short, is

described as an hybrid ant system-local search. Indeed, traditional ant systems build a solution with

the memory from scratch. In HAS-QAP, the memory is used to modify existing solutions, in the

spirit of local search. Moreover, HAS-QAP uses the fast descent procedure of Figure 3.

∆ π i j,,()
aii a jj–() bπjπj

bπiπi
–() aij a ji–() bπjπi

bπiπj
–()+ +

aki akj–() bπkπj
bπkπi

–() aik a jk–() bπjπk
bπiπk

–()+
k i j,≠
∑

=

τ iπi
τ iπi

τ
iπi

∗ τ
iπi

∗

7

a) Memory implementation.

There are two different memories in HAS-QAP. The first one is a matrix that records a statistics

on the best solutions produced by the search. The second one is a population of m (= 10) solutions,

in addition to the best solution produced by the search. Initially, all the entries of the matrix are

identical and the solutions memorised are random permutations improved with the fast local search

procedure of Figure 3. From a memory point-of-view, this method is between the genetic methods

presented further that use a population of solutions only and FANT that uses a statistics-matrix

only.

b) Provisory solution.

Instead of building a completely new solution, HAS modify all the solutions in memory by

swapping a number of times two elements of the solutions. The first element is chosen randomly

and uniformly and the second one in a probabilistic way, considering the values contained in the

statistics-matrix.

c) Improvement procedure.

The provisory solutions are improved with the fast descent procedure of Figure 3.

d) Memory update.

Normally, the entries τij of the statistics-matrix Τ = (τij) are updated as follows: First,

τij = (1 – α) τij (1 ≤ i, j ≤ n) where α is a parameter. The effect of this setting is to lower the value of

all the entries of the matrix, simulating the evaporation of pheromone trails of real ants. Then, few

entries of the matrix are re-enforced by setting: (1 ≤ i ≤ n), where π* is

the best solution found by the search so far.

The m solutions of the population are replaced by the improved solutions. Exceptionally, the

memory is updated in another way, in two conditions:

1) If π*, the best solution has not been improved during a number of iterations, the memory

is completely re-initialised: All the entries of the matrix are set to the same value and m – 1

solutions of the population are randomly generated while the mth becomes π*. The aim of

this special treatment is to diversify the search.

2) If π*, the best solution has just been improved, then the solution obtained after applying

the fast descent procedure replaces those in memory only if it is better. Otherwise, the solu-

tion initially in memory is not modified. The aim of this special treatment is to intensify the

search around good solutions.

τ
iπi

∗ τ
iπi

∗ α f π∗()⁄+=

8

3. Genetic algorithms.

Genetic algorithms also simulate a natural process: those of the evolution of species that sexu-

ally reproduce and has been proposed by Holland (1975). During sexual reproduction, a new indi-

vidual, defined by its genetic patrimony, is created by combining half of the genetic patrimony of its

parents. Eventually, the genetic patrimony is altered by a mutation. If the new individual inherits

from good characteristics, its survival probability is higher, as well as the number of times it can

reproduce itself. So, good characteristics are more disseminated and the population tends to contain

better and better individuals.

This process can be used to optimize combinatorial problems as well: solutions play the rôle of

individuals, sexual reproduction is simulated by a cross-over operator that mixes two solutions to

create a new one that is eventually altered by a mutation operator. Let us see shortly how this can be

implemented for the QAP by first reviewing the GTSH method of Fleurent and Ferland (1994). Our

new GDH method can be viewed as a variant of GTSH. As above, the methods are presented under

the AMP perspective.

3. 1. Genetic-Taboo Search Hybrid (GTSH).

The GTSH method has been proposed by Fleurent and Ferland (1994). It can be presented as a

genetic algorithm, using a special cross-over operator specially designed for permutations (due to

Tate and Smith, 1995) and a mutation operator that consists in performing 4n steps of a taboo

search (due to Taillard, 1991). In the AMP terminology, GTSH can be presented as follows:

a) Memory implementation.

The memory is constituted by 100 solutions (permutations). Initially, these solutions are

obtained by 100 taboo search runs performing 4n iterations each and starting with random initial

solutions. For problem of small size (n < 50), Taillard (1994) uses a population of 2n solutions

instead of 100. This speeds-up the search notably. In the following, we consider this improved ver-

sion of the algorithm of Fleurent and Ferland with a population of min(100, 2n) solutions.

b) Generation of a provisory solution.

The provisory solution is build as follows. First, two permutations are selected from the popu-

lation. The probability of selecting the kth worst solution of the population is 2k/s(s – 1), where s is

the size of the population. The cross-over operator of Tate and Smith (1995) is applied to the

selected solutions to produce the provisory solution. This operator proceeds in three phases: 1) The

elements common in both selected permutations are copied in the new solution at the same place. 2)

If not already chosen, the other elements are randomly chosen from the selected permutations, at

the same position. 3) The unfilled positions are randomly chosen in order to complete the solution.

9

c) Improvement procedure.

The improvement procedure is the taboo search of Taillard (1991). It is run for 4n iterations,

starting from the provisory solution.

d) Memory update.

The new solution is inserted in the memory and the worst solution is removed from the mem-

ory.

3. 2. Genetic-Descent Hybrid method (GDH).

To better study the influence of the knowledge brought by the memory and by taboo search, we

have slightly modified the algorithm of Fleurent and Ferland and replaced the taboo search by our

fast descent method presented in Figure 3. So, we can better compare the matrix-memory learning

process of FANT with a population-memory learning process since the improving procedures

embedded in FANT and GDH are the same. Moreover, the comparison of both methods is more

reliable since most of the computing time is spent in the improvement procedure; thus, the compu-

tation effort can be measured in terms of number of calls to the improvement procedure rather than

in seconds.

4. Variable neighbourhood search (VNS).

VNS is a recent meta-heuristic proposed by Hansen and Mladenovic (1997) that presents a

number of similarities with the strategic oscillation, the taboo alternating paths and taboo threshold-

ing of Glover (1986, 1990, 1995). The basic idea of VNS is to use several neighbourhood structures

instead of a unique one, as it is often the case in many local search implementations. For the QAP,

we define the neighbourhood Nk(π) of a solution π as all the permutations that can be obtained by

applying k swaps to π. Our basic VNS for the QAP can be described as follows:

1)Choose π* randomly, set k = 1.

2)Repeat for I iterations:

2a)Choose µ, randomly in Nk(π*)
2b)Apply the fast descent method to µ to obtain π
2c)If f(π) < f(π*) then set π* = π and k = 1

Else set k = (k modulo Kmax) + 1

Figure 4 : Variable neighbourhood search for the QAP.

The RVNS-QAP method is based on the same scheme but the descent procedure is omitted in

step 2b. In our implementation this allows to perform roughly n2/2 iterations in the same time than

VNS-QAP requires for performing one iteration. For VNS-QAP, we have chosen Kmax = n while

for RVNS-QAP, we have chosen Kmax = 5 since we have observed that an improving solution in Nk

was never obtained if k was larger than 5.

10

5. Numerical results.

5.1. Analysis of the methods.

The four AMPs presented above, FANT, HAS-QAP, GDH and GTSH, are very different, even

if they are based on the same basic concepts. Considering in addition the no-memory methods

VNS-QAP and RVNS-QAP, we can try to answer few questions in this section:

— What is the benefit of using a memory.

— What type of memory learns better or faster.

— Which procedure producing provisory solutions is best.

— What knowledge is brought by the improving procedure.

It is clear that the answers to these questions are not independent each others since the choice

of the memory type implies a limitation in the choice of the provisory solution generation. Four of

these methods, FANT, GDH, VNS and HAS-QAP use the same improving procedure. The com-

plexity of the last, as well as those of the taboo search used in GTSH is O(n3). The other compo-

nents of these methods (provisory solution generation, update of the memories) have a lower

complexity level. So, it is natural to express the computation effort in number of calls to the

improvement procedure, the time spent outside this procedure being negligible.

In our implementations, we have observed that 4n (respectively n2) iterations of the taboo

search of Taillard (1991) (respectively RVNS-QAP) take almost 8 (respectively 2) times more time

than our fast improving procedure. Therefore, in tables 2 to 4, we allow less iterations to the GTSH

method and more to the RVNS-QAP, in order to keep a parity in computation time.

To compare our methods, we consider a set of about 30 well known QAP instances from the

QAPLIB compiled by Burkard, Karish and Rendl (1991). The name of these instances contains a

number corresponding to their size. Most of these problems have data matrices with very variable

entries and are issued from practical applications or have been randomly generated with non uni-

form laws, imitating the distributions observed in real world problems. However, the nug.. and sko..

instances are more regular. The selected instances are particularly hard to solve by local searches, as

shown experimentally by Taillard (1994) and Gambardella, Taillard and Dorigo (1997) or by theo-

retic complexity measures discussed in Angel and Zissimopoulos (1997). In Table 2 (respectively

Tables 3 and 4), we compare FANT, HAS-QAP, GDH, GTSH, VNS-QAP and RVNS-QAP when

they run for the same computing time, corresponding to 10 (respectively 100 and 1000) calls to the

fast descent procedure. Comparisons are made by averaging the quality of the solutions produced

by these methods (measured in per cent above the best solution known) over 10 independent runs of

each method. The exact computing time is given for FANT only, (seconds on Sun Sparc 5); the

times for the other methods are almost the same.

For very short runs (Table 2), only FANT has had time to initialise the memory and to begin the

learning process. The other AMPs are still in the initialisation phase: HAS-QAP and GHD have just

11

produced the 10 first solutions of their population, so both methods are equivalent; GTSH has just

had the time to produce the first solution of its population and is therefore equivalent to running the

taboo search of Taillard (1991) for 4n iterations (TT). For these very short runs we see that our new

FANT often produces the best results (identified by bold characters in the tables). This can be

explained by the fact that its learning process is the fastest. However, for the problems of the type

nug.. and sko.., TT is better while it can produce very bad results on irregular and more structured

instances, like els.. and tai..b.

Although RVNS-QAP is able to perform a much larger number of iterations per unit of time

than VNS-QAP, it is almost never better than the last. On the average, our implementation of VNSs

are better than TT for short runs and irregular problems.

Problem
name

Best solution
value known

FANT
HAS-QAP

≡ GDH
GTSH
≡ TT

VNS-
QAP

RVNS-
QAP

Time
FANT [s]

bur26a 5426670 0.129 0.158 0.250 0.194 0.243 0.47

bur26b 3817852 0.230 0.184 0.540 0.210 0.423 0.45

bur26c 5426795 0.052 0.066 0.341 0.124 0.381 0.46

bur26d 3821225 0.046 0.064 0.587 0.057 0.361 0.46

bur26e 5386879 0.040 0.042 0.123 0.107 0.216 0.46

bur26f 3782044 0.149 0.025 0.404 0.145 0.540 0.45

bur26g 10117172 0.053 0.030 0.384 0.210 0.211 0.46

bur26h 7098658 0.017 0.014 0.311 0.380 0.445 0.46

els19 17212548 3.122 6.426 32.062 14.204 19.180 0.21

kra30a 88900 4.758 5.447 5.404 5.250 6.578 0.74

kra30b 91420 3.373 3.345 2.330 3.538 4.747 0.83

nug20 2570 2.319 2.537 1.424 2.093 3.829 0.23

nug30 6124 2.283 2.469 2.286 1.646 3.266 0.78

sko42 15812 2.127 2.657 1.551 2.222 3.305 2.38

sko49 23386 1.938 2.091 1.549 1.492 2.797 4.01

sko56 34458 2.003 1.918 1.621 1.688 2.294 6.19

sko64 48498 1.801 2.052 1.005 1.719 2.441 9.52

sko72 66256 1.781 1.975 1.481 1.778 2.286 13.82

sko81 90998 1.779 1.732 1.491 1.420 1.753 20.18

sko90 115534 1.627 1.604 1.346 1.843 1.824 28.10

tai20b 122455319 1.690 2.887 19.611 7.185 11.495 0.25

tai25b 344355646 2.584 3.040 15.931 6.008 11.150 0.48

tai30b 637117113 1.977 3.566 15.716 4.523 8.282 0.86

tai35b 283315445 2.855 1.989 6.491 5.430 7.631 1.43

tai40b 637250948 4.226 4.702 8.740 7.453 8.979 2.32

tai50b 458821517 2.801 2.302 6.247 5.073 4.403 4.65

tai60b 608215054 2.918 2.444 7.818 3.799 7.439 8.31

tai80b 818415043 3.704 4.067 4.796 3.789 5.351 20.42

Average 1.871 2.137 5.007 2.985 4.352

Table 2 : Performances of the methods on short runs (time equivalent to 10 calls to the improving procedure)

12

For medium runs (Table 3), HAS-QAP is the best method. But FANT and VNS-QAP remains

very competitive while GTSH is still in the initialisation phase. For instances of size 50 or more,

GDH has just finished its initialisation and the learning process has not begun. So, the performances

of GDH are not as good as FANT and HAS-QAP but better than GTSH. However, for the sko..

instances GTSH is better than GHD, meaning that the use of taboo search seems to be an advantage.

RVNS-QAP performs poorly on medium and long runs: the solution quality is almost the same

as the quality for short runs. This means that the use of a descent method helps a lot in finding good

solutions, if enough computing time is available.

For long runs (Table 4), FANT and VNS-QAP are generally surpassed by HAS-QAP that had

time to develop its learning process. It seems that the addition of a small population of solutions is

Problem
name

FANT HAS-QAP GDH GTSH VNS-QAP
RVNS-
QAP

Time
FANT [s]

bur26a 0.0449 0.0275 0.0581 0.0903 0.055 0.198 4.6

bur26b 0.0717 0.1065 0.0571 0.1401 0.053 0.346 4.5

bur26c 0.0000 0.0090 0.0021 0.0112 0.001 0.347 4.6

bur26d 0.0022 0.0017 0.0039 0.0059 0.003 0.223 4.5

bur26e 0.0068 0.0039 0.0059 0.0066 0.005 0.121 4.6

bur26f 0.0007 0.0000 0.0034 0.0097 0.001 0.357 4.5

bur26g 0.0025 0.0002 0.0027 0.0094 0.003 0.153 4.6

bur26h 0.0003 0.0007 0.0021 0.0063 0.001 0.305 4.5

els19 0.5148 0.9225 1.6507 2.2383 0.421 14.056 2.0

kra30a 2.4623 1.6637 2.9269 2.0070 1.660 5.139 7.4

kra30b 0.6607 0.5043 1.1748 0.6082 0.677 4.137 8.3

nug20 0.6226 0.1556 0.4825 0.1774 0.638 2.903 2.2

nug30 0.6172 0.5650 1.1920 0.3971 0.686 2.972 7.8

sko42 0.8158 0.6539 1.2168 0.6964 0.971 3.045 23.8

sko49 0.7740 0.6611 1.4530 0.4936 0.547 2.518 40.0

sko56 1.0941 0.7290 1.4272 0.5869 0.923 2.215 61.9

sko64 0.9213 0.5035 1.2739 0.6678 0.804 2.310 95.2

sko72 0.8826 0.7015 1.4224 0.7130 0.762 2.166 138.2

sko81 0.9950 0.4925 1.3218 0.7125 0.561 1.666 201.8

sko90 0.9241 0.5912 1.2518 0.7606 0.842 1.773 280.9

tai20b 0.1810 0.2426 0.1807 1.0859 0.226 1.252 2.4

tai25b 0.1470 0.1326 0.3454 1.9563 0.196 7.792 4.8

tai30b 0.2550 0.2603 0.3762 3.2438 0.510 4.197 8.6

tai35b 0.3286 0.3429 0.7067 1.5810 0.248 5.795 14.3

tai40b 1.3401 0.2795 0.9439 3.9029 1.559 7.421 23.0

tai50b 0.5412 0.2906 1.1281 1.6545 0.642 4.063 46. 5

tai60b 0.6699 0.3133 1.2756 2.6585 0.880 6.309 83.0

tai80b 1.4379 1.1078 2.3015 2.7702 1.569 4.909 204.1

Average 0.583 0.402 0.864 0.936 0.552 3.168

Table 3 : Comparison on medium runs (100 calls to the improving procedure)

13

useful at long term. The pertinence of this remark is strengthened by the fact that GDH seems to be

the best method for tai..b instances. For sko.. instances, HAS-QAP and GDH are clearly the best

methods among those compared in Table 3.

In Table 4, we put in parentheses the average computing time of FANT to obtain the best solu-

tion known, when the 10 runs succeeded in finding this solution. The time to complete the 1000

iterations can be approximated by 10 times the time to complete 100 iterations (Table 3).

It seems that the learning process obtained with a population of solutions is very efficient at

long term and the use of a simple descent procedure embedded in the process is more efficient than

a basic taboo search. So, a natural question that arises, is to know whether the use of an improving

procedure is necessary or not, since this procedure is time consuming, while the time spent in this

Problem
name

FANT HAS-QAP GDH GTSH VNS-QAP
Time

FANT [s]

bur26a 0.0253 0 0.0345 0.0179 0.001 46

bur26b 0.0171 0 0.0358 0.0304 0 45

bur26c 0 0 0 0 0 (2.9)

bur26d 0 0 0.0004 0.0002 0 (9.2)

bur26e 0 0 0.0012 0.0005 0 (6.6)

bur26f 0 0 0 0 0 (4.2)

bur26g 0 0 0.0010 0 0 (8.2)

bur26h 0 0 0.0010 0.0012 0 (2.0)

els19 0 0 1.4425 0 0 (1.1)

kra30a 1.0304 0.6299 1.0787 0.3597 0.802 74

kra30b 0.0919 0.0711 0.1652 0.0641 0.153 83

nug20 0.1401 0 0.0156 0 0 22

nug30 0.2515 0.0980 0.1600 0.0431 0.271 78

sko42 0.2429 0.0759 0.0873 0.1897 0.186 237

sko49 0.2395 0.1411 0.1890 0.2037 0.220 400

sko56 0.3216 0.1010 0.1544 0.3023 0.600 619

sko64 0.1942 0.1291 0.1423 0.3820 0.421 951

sko72 0.3450 0.2765 0.1980 0.3876 0.409 1382

sko81 0.2637 0.1437 0.1666 0.4342 0.337 2018

sko90 0.3966 0.2311 0.1949 0.4342 0.452 2809

tai20b 0.0905 0.0905 0.0905 0 0.045 24

tai25b 0 0 0.0139 0.0605 0.007 (13)

tai30b 0.0003 0 0.0290 0.1426 0.001 85

tai35b 0.0373 0.0256 0.0187 0.2639 0.072 143

tai40b 0.2016 0 0.2038 0.7383 0.001 228

tai50b 0.2063 0.1916 0.0086 0.6433 0.183 466

tai60b 0.2478 0.0483 0.0089 0.8313 0.076 830

tai80b 0.8245 0.6670 0.2246 1.7358 0.907 2041

Average 0.185 0.104 0.167 0.216 0.184

Table 4 : Comparison long runs (1000 calls to the improving procedure)

14

procedure could be used to allow more iterations. The answer is clearly no. RVNS-QAP is worse

than VNS-QAP and numerical experiments (not reported here) obtained by removing the improv-

ing procedure of the GTSH or GDH methods have shown that the population converges toward a

solution that is very bad even by considering a much larger population: with a population of 500

solutions, the solutions produced by the method without improving procedure are worse than those

of Table 2 while using a computation time larger than those of Table 4. So, we can say that each

component of AMP is necessary. The improving procedure is not able to find good solutions if it is

not guided by a learning process that produces solutions with good characteristics and the memory

does not succeed in learning if it does not dispose of a myopic improving procedure.

5. 2. New best solutions known.

Our new methods FANT and GDH are very aggressive and fast. So, they are adapted for deal-

ing with large size instances where a large number of iterations are required. We have applied a

m Best known m Best known m Best known m Best known
3 7810 35 4890132 67 21461130 99 52660116
4 15620 36 5222296 68 22271676 100 53838088
5 38072 37 5565236 69 23086332 101 55014262
6 63508 38 5909202 70 23898390 102 56208480
7 97178 39 6262248 71 24742496 103 57417112
8 131240 40 6613472 72 25570996 104 58629516
9 183744 41 7002794 73 26423856 105 59854744

10 242266 42 7390586 74 27276468 106 61084902
11 304722 43 7795062 75 28154258 107 62324634
12 368952 44 8219428 76 29001308 108 63582416
13 457504 45 8677670 77 29928042 109 64851966
14 547522 46 9134172 78 30820660 110 66120830
15 644036 47 9575736 79 31736576 111 67392724
16 742480 48 10016256 80 32658876 112 68666416
17 878888 49 10523016 81 33571824 113 69984758
18 1012990 50 11017342 82 34497444 114 71304194
19 1157992 51 11517060 83 35447648 115 72630764
20 1305744 52 12019082 84 36409340 116 73962220
21 1466210 53 12558226 85 37379574 117 75307424
22 1637794 54 13098850 86 38393344 118 76657014
23 1820052 55 13668486 87 39403048 119 78015914
24 2010846 56 14238840 88 40472972 120 79375832
25 2216160 57 14798834 89 41567886 121 80756852
26 2426606 58 15395948 90 42621464 122 82138768
27 2645436 59 15981086 91 43704936 123 83528554
28 2871704 60 16575644 92 44759294 124 84920540
29 3122510 61 17202312 93 45891688 125 86327812
30 3373854 62 17824828 94 46988852 126 87736646
31 3646344 63 18435790 95 48108960 127 89150166
32 3899744 64 19050432 96 49182368 128 90565248
33 4230950 65 19859448 97 50344050
34 4560162 66 20655396 98 51486642

Table 5 : Best solution values known to problems instances grey_16_16_m.

15

GDH with a larger population of solutions to instances tai150b and, respectively tho150; the proc-

ess has converged to the new best solution value 49889664 and, respectively 8133642. after about

100000 iterations.

In Table 5, we give the values of the best solutions we have found with very long runs (up to

100000 iterations) of our FANT and GDH methods for QAP instances corresponding to the elabo-

ration of grey frames. This type of instances is described in Taillard (1994) under the name

grey_n1_ n2_m, where m is the density of the grey one wants to produce (0 ≤ m ≤ n = n1·n2). So, for

a frame of size n1 × n2, there are n1·n2 instances of size n = n1·n2 to solve.

In fact, solutions for densities m > n1·n2/2 can be obtained by symmetry from densities

m < n1·n2/2. Moreover, for few values of m, the problem is easy; for example for m = 0, 1, n1·n2

or n1·n2 – 1, any solution is optimal. The problem instance tai256c from QAPLIB corresponds to

instance grey_16_16_92. To obtain the other instances associated to other values of m, one has to

replace the data matrix of the form: , where 1 is a sub-matrix of size 92 × 92 composed of 1

only, by a sub-matrix of size m × m composed of 1 only. The very special character of this matrix

allows to simplify and to shorten a lot the computation, as shown in Taillard (1994).

6. Conclusions.

In this paper, we have proposed FANT, GDH, VNS-QAP and RVNS-QAP new heuristic

methods for the QAP. The first methods are based on adaptive memory programming (AMP) while

the last ones do not use memory. We group under the generic name of AMP a number of meta-heu-

ristic that are working on the same general principle: 1) A memory stores solutions or characteris-

tics of solutions produced by the search; 2) A procedure generates new provisory solution,

consulting the memory; 3) An improving procedure is applied to the provisory solution before

updating the memory.

Our new methods are easy to implement and are very efficient for some type of instances. They

allow to improve a number of the best solutions known to the largest instances of the literature.

These new methods are compared to other methods that are also based on AMP, but using other

types of memory and other improving procedures. So, we were able to extract the influence of the

various components of AMP: To obtain the best solutions in the shortest time, it seems that FANT

is very well adapted; a simple statistics on the solutions produced by the search is convenient. If

solutions of higher quality are desired, it seems that keeping a number of solutions in memory can

be recommended.

The improving procedure is mandatory if one wants to find good solutions and it must be as

fast as possible. The use of a high quality procedure, like a basic taboo search that requires a larger

amount of computation time, seems to be counter-productive if the time factor is important.

1 0
0 0

16

We have to mention that the methods compared in this paper, FANT, HAS-QAP, GDH, GTSH

and VNS-QAP are among the most competitive methods for irregular QAP instances. For other

type of instances, none of these method is competitive regarding to other taboo searches. This can

be explained by the fact that the learning processes are not adapted for these instances. We can

imagine, for example, that the attraction basin of the global optimum is small and hidden by numer-

ous local optima of high quality.

Acknowledgements

This research was supported by the Swiss National Science Foundation project

number 21-45653.95.

6. Bibliography

E. Angel and V. Zissimopoulos, “On the landscape ruggedness of the quadratic assignment problem”,

International workshop on combinatorics and computer science LIX–CNRS, Palaiseau, France,

September 1997.

R. Battiti and G. Tecchiolli, “The reactive tabu search”, ORSA Journal on Computing 6, 1994,

126–140.

R. E. Burkard, S. Karisch and F. Rendl, “QAPLIB — A quadratic assignment problem library”, Euro-

pean Journal of Operational Research 55, 1991, 115–119, electronic update: http://fmt-

bhpl.tu–graz.ac.at/~karisch/qaplib, (29. 1. 1997).

A. Colorni, M. Dorigo and V. Maniezzo, “Distributed Optimization by Ant Colonies”, Proceedings of the

European Conference on Artificial Life, Elsevier Publishing, 1991, 134–142.

V.-D. Cung, T. Mautor, P. Michelon and A. Tavares, “A scatter search based approach for the quadratic

assignment problem”, proceedings of the IEEE International Conference on Evolutionary Compu-

tation and Evolutionary Programming (ICEC’97), Indianapolis, 1997, 165–170.

D. T. Connolly, “An improved annealing scheme for the QAP”, European Journal of Operational

Research 46, 1990, 93–100.

M. Dorigo, “Ottimizzazione, aprendimento automatico, et algoritmi basati su metafora naturale”, Ph.

D. dissertation, Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy, 1992.

M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative Learning Approach to the

Traveling Salesman Problem”, IEEE Trans. Evolutionary Computing 1, 1997.

M. Dorigo, V. Maniezzo and A. Colorni, “The Ant System: An Autocatalytic Optimizing Process”, Tech-

nical Report 91–016, Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy, 1991.

17

M. Dorigo, V. Maniezzo and A. Colorni, “The Ant System: Optimization by a Colony of Cooperating

Agents”, IEE Transactions on System, Man, and Cybernetics –Part B 26, 1996, 29–41.

C. Fleurent and J. Ferland, “Genetic hybrids for the quadratic assignment problem”, DIMACS Series

in Math. Theoretical Computer Sci. 16, 1994, 190–206.

L. M. Gambardella and M. Dorigo, “HAS-SOP: Ant colony optimization for sequential ordering prob-

lems”, technical report IDSIA–11–97, IDSIA, Lugano, Switzerland, 1997.

L. M. Gambardella, E. D. Taillard and M. Dorigo, “Ant colonies for the quadratic assignment problem”,

technical report IDSIA–4–97, IDSIA, Lugano, Switzerland, 1997.

J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann

Arbor, 1975.

F. Glover, “Future Paths for Integer Programming and Links to Artificial Intelligence”, Computers

and Operations Research 13, 1986, 156–166.

F. Glover, “Simple Tabu Thresholding”, Proceedings of the Journées du L. I. P. N., Paris, 1990,

135–143.

F. Glover, “Tabu Thresholding: Improved Search by Nonmonotonic Trajectories”, ORSA Journal on

Computing 7, 1995.

P. Hansen and N. Mladenovic, “An introduction to variable neighborhood search”, Presented at the 2nd

Metaheuristics International Conference, Sophia-Antipolis, France, 1997.

T. C. Koopmans and M. J. Beckmann, “Assignment problems and the location of economics activities”,

Econometrica 25, 1957, 53–76.

S. Shani and T. Gonzalez, “P-complete approximation problems”, Journal of the ACM 23, 1976,

555–565.

L. Sondergeld and S. Voß, “A Star-Shaped Diversification Approach in Tabu Search”, in: Meta-

Heuristics: Theory and Applications, I. H. Osman and J. P. Kelly (editors), Kluwer Academic Pub-

lishers, 1996, 489–502.

T. Stützle and H. H. Hoos, “The MAX-MIN Ant System and Local Search for Combinatorial Optimi-

zation Problems: Towards Adaptive Tools for Global Optimization”, Proceedings of the 2nd Meta-

heuristics International Conference, Sophia-Antipolis, France, 1997, 191–193.

É. D. Taillard, “Robust taboo search for the quadratic assignment problem”, Parallel Comput. 17,

1991, 443–455.

18

É. D. Taillard, “Comparison of iterative searches for the quadratic assignment problem”, Location

Science 3, 1995, 87–105.

É. D. Taillard, L. M. Gambardella, M. Gendreau and J.-Y. Potvin “Programmation à mémoire adaptative”,

technical report IDSIA–79–97, IDSIA, Lugano, Switzerland, 1997.

D. E. Tate and A. E. Smith, “A genetic approach to the quadratic assignment problem”, Computers and

Operations Research 1, 1995, 855–865.

