
POPMUSIC FOR THE TRAVELLING SALESMAN PROBLEM

ÉRIC D. TAILLARD AND KELD HELSGAUN

Abstract. POPMUSIC � Partial OPtimization Metaheuristic Under Special
Intensi�cation Conditions � is a template for tackling large problem instances.
This metaheuristic has been shown to be very e�cient for various hard combi-
natorial problems such as p-median, sum of squares clustering, vehicle routing,
map labelling and location routing. A key point for treating large Travelling
Salesman Problem (TSP) instances is to consider only a subset of edges con-
necting the cities. The main goal of this article is to present how to build a
list of good candidate edges with a complexity lower than quadratic in the
context of TSP instances given by a general function. The candidate edges
are found with a technique exploiting tour merging and the POPMUSIC meta-
heuristic. When these candidate edges are provided to a good local search
engine, high quality solutions can be found quite e�ciently. The method is
tested on TSP instances of up to several million cities with di�erent structures
(Euclidean uniform, clustered, 2D to 5D, grids, toroidal distances). Numer-
ical results show that solutions of excellent quality can be obtained with an
empirical complexity lower than quadratic without exploiting the geometrical
properties of the instances.

1. Introduction

The travelling salesman problem [30, 24, 10] (TSP) is certainly the most studied
NP-hard combinatorial optimization problem. Today, we are able to exactly solve
instances with up to several thousand cities. Heuristic methods are able to �nd
solutions for instances with millions of cities at a fraction of the percent above the
optimum with a reasonable computational e�ort (see e.g. [3, 5, 19, 14, 25]).

A key point for treating large TSP instances is to consider only a subset of edges
connecting the cities. For this purpose, it is essential to build a network with an
extremely low density, typically by keeping only few connections for each city. In
the case of geometrical problems, several techniques have been proposed for gen-
erating an adequate network. For 2-dimensional Euclidean instances, a Delaunay
triangulation [11] can be built in O(n log(n)), where n is the number of cities in
the problem. When the cities are speci�ed with coordinates in K dimensions, an-
other technique is to build a KD-tree [6] (in O(Kn log(n))) and to keep only few of
the nearest cities in every quadrant. This ensures to build a connected and sparse
network.

The Quick-Boruvka heuristic is commonly used to build a tour. It produces
moderately good solutions (generally more than 10% above optimum) very rapidly
(around one second for a 1 million cities TSP). For getting better solutions, almost
all the state-of-the-art methods make use of local searches based on variants of
ejection chains. The oldest and most famous ejection chain method was proposed in
1973 by Lin and Kernighan [18]. The Lin-Kerhighan neighbourhood (LK for short)
can be improved by enriching it with k-opt moves, consisting of replacing k edges by

Key words and phrases. Travelling Salesman, Local search, POPMUSIC, Large-Scale Opti-
mization, Metaheuristics.
June 22, 2018 c©2018 This manuscript version is made available under the CC-BY-NC-ND 4.0
license. DOI: 10.1016/j.ejor.2018.06.039.

1



2 ÉRIC D. TAILLARD AND KELD HELSGAUN

Instance size
103 104 105 106 107

C
P
U
T
im
e
[s
]

10−1

1

101

102

103

105

104

DIMACS E instances
DIMACS C instances

Figure 1: Computational time of Concorde linkern on uniform (E) and clustered (C) DIMACS
instances with default parameters.

is also implemented in the LKH code, but with di�erent moves. In this code,

each LK restart is called a trial.

Figure 1 reports the computational time and as a function of the problem

size for the linkern code of Concorde. The Euclidean instances considered in this

�gure are those of the DIMACS TSP Challenge [? ] uniformly distributed in a

10000 × 10000 square (E type) and clustered instances (C type). Throughout

this article, the computational times are expressed in seconds for a computer

running Linux 4.4.0-31-generic(x86-64), using a single core of an i7 930 processor

@2.8GHz (commercialized in March 2010). We see in Figure 1 that the compu-

tational time increases almost linearly with the problem size. Experiments on

TSPLIB instances have shown a very similar behaviour.

Figure 2 reports the quality of the solutions obtained for linkern and LKH.

In this �gure, the deviation is expressed in percent above the best values that are

known, published on the web site http://webhotel4.ruc.dk/~keld/research/

3

Figure 1. Computational time of Concorde linkern on uniform
(E) and clustered (C) DIMACS instances with default parameters.

k other ones. For instance, the LKH code available on the web site [14, 15] (http://
webhotel4.ruc.dk/~keld/research/LKH/) incorporates 5-opt moves in addition
to the LK neighbourhood. Better solutions can be obtained by perturbation of
the local optimum. This is done for instance in the Chained Lin-Kernighan of [5]
implemented in Concorde [3] (http://www.math.uwaterloo.ca/tsp/concorde.
html) by applying double-bridges 4-opt moves. A perturbation mechanism is also
implemented in the LKH code, but with di�erent moves. In this code, each LK
restart is called a trial.

Figure 1 reports the computational time and as a function of the instance size for
the linkern code of Concorde. The Euclidean instances considered in this �gure are
those of the DIMACS TSP Challenge [16] uniformly distributed in a 10000× 10000
square (E type) and clustered instances (C type). Throughout this article, the
computational times are expressed in seconds for a computer running Linux 4.4.0-
31-generic(x86-64), using a single core of an i7 930 processor @2.8GHz (commer-
cialized in March 2010). We see in Figure 1 that the computational time increases
almost linearly with the instance size. Regressions on computational times provide
t(n) ≈ 1.64 ·10−4 ·n1.05 for C instances and t(n) ≈ 1.66 ·10−5 ·n1.21 for E instances.
Experiments on TSPLIB instances have shown a very similar behaviour.

Figure 2 reports the quality of the solutions obtained for linkern and LKH. In
this �gure, the deviation is expressed in percent above the best values that are
known, published on the web site http://webhotel4.ruc.dk/~keld/research/

LKH/DIMACS_results.html. For instances with less than 10,000 cities, the proven
optima are known. LKH was run with slightly di�erent parameters than default
ones: CANDIDATE_SET_TYPE =DELAUNAY PURE, EXTRA_CANDIDATES
= 4, INITIAL_TOUR_ALGORITHM = QUICK-BORUVKA, SUBGRADIENT
= NO. Figure 2 reports the solution produced by LKH after the same compu-
tationnal e�ort as Concorde linkern. Both methods were run only once for each
instance for showing the spread in computational time and solution quality for the

http://webhotel4.ruc.dk/~keld/research/LKH/
http://webhotel4.ruc.dk/~keld/research/LKH/
http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html
http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html
http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html


POPMUSIC FOR THE TSP 3

Instance size
103 104 105 106 107

0.01

0.1

1

10
%

E
xc
es
s

0

Concorde C
LKH C
Concorde E
LKH E

Figure 2: Quality of solutions produced by Concorde linkern and LKH on uniform
(E) and clustered (C) DIMACS instances. LKH is run with default parameters but
CANDIDATE_SET_TYPE = DELAUNAY PURE, EXTRA_CANDIDATES = 4, INI-
TIAL_TOUR_ALGORITHM = QUICK-BORUVKA, SUBGRADIENT = NO. LKH is
stopped at the same CPU times as those observed for Concorde linkern

4

Figure 2. Quality of solutions produced by Concorde

linkern and LKH on uniform (E) and clustered (C) DI-
MACS instances. LKH is run with default parameters
but CANDIDATE_SET_TYPE = DELAUNAY PURE, EX-
TRA_CANDIDATES = 4, INITIAL_TOUR_ALGORITHM =
QUICK-BORUVKA, SUBGRADIENT = NO. LKH is stopped at
the same CPU times as those observed for Concorde linkern

same instance size. We see in this �gure that LKH generally provides slightly bet-
ter solutions than Concorde linkern. We have observed that LKH has produced
a slightly worse solution for only one of the 49 DIMACS C and E instances. All
leading methods for the TSP are able to produce similar results. The reader can
see [25] for a comparison of leading methods for the TSP.

Several practical applications can lead to TSPs for which geometrical properties
cannot be directly exploited. Among them, let us quote no-wait �owshop sched-
uling, one machine scheduling with set-up time, DNA sequencing, X-ray crystal-
lography, colour 3D printing with minimization of colour changes, drone surveying
taking into account elevation, wind strength and energy, and, generally, asymmetri-
cal TSP instances. See, e.g. [8] for such instances modelling real-world applications.
The 3D printing and drone surveying are new applications that can lead to very
large instances. The computational e�ort for producing good solutions for such
instances must be kept very limited.

Concorde and LKH can deal with such instances, but the matrix of all distances
between each pair of cities must be provided. This limits the instance size that
Concorde can treat. Problem instances with 31k cities cannot be treated with this
code with distance matrix (while this remains possible with the LKH code). For
creating a sparse network for applying a local search, Concorde considers a �xed
number of the nearest cities for each city. The draw-back of this method is that the
resulting sparse network may not be connected. This may degrade the quality of
the solutions produced. When providing the full distance matrix, for the DIMACS
C instances with ≤ 10, 000 cities, Concorde linkern produces solutions that are, on



4 ÉRIC D. TAILLARD AND KELD HELSGAUN

103

104

105

106

102

10

1

10−1

O(n2.12)

O(n1.34)

T
im
e
[s
]

Instance Size

1-Tree Preprocessing

LKH 60 Trials

103 104 105 106

Figure 3: Computational time of LKH for uniform (E) and clustered (C) DIMACS instances,
with candidate edge list found with LKH's standard preprocessing, 60 trials and a single run.
The lines correspond to interpolation polynomials.

degrade the quality of the solutions produced. When providing the full distance

matrix, for the DIMACS C instances with ≤ 10, 000 cities, Concorde linkern

produces solutions that are, on the average, 2.6% above those obtained when

providing the same instances with Euclidean coordinates.

If not speci�ed otherwise, LKH creates a sparse network by computing a

1-tree (a minimum weight spanning tree on all vertices but one + plus 2 edges

adjacent to this vertex) and uses a concept named α-nearness (minimum mod-

i�cation of the penalty associated to a vertex in order to change its degree

in the 1-tree). The resulting sparse network is connected, but not necessarily

Hamiltonian (see e.g. Figure 15).

This method can be applied to any symmetrical TSP but requires a compu-

tational time that increases quadratically, as shown on Figure 3.

When the distance between 2 cities is given by a general function (that can be

computed in constant time), it is challenging to �nd a good tour with a compu-

tational e�ort that increases less than quadratically. Obtaining a solution with

6

Figure 3. Computational time of LKH for uniform (E) and
clustered (C) DIMACS instances, with candidate edge list found
with LKH's standard preprocessing, 60 trials and a single run. The
lines correspond to interpolation polynomials.

the average, 2.6% above those obtained when providing the same instances with
Euclidean coordinates.

If not speci�ed otherwise, LKH creates a sparse network by computing a 1-tree
(a minimum weight spanning tree on all vertices but one plus 2 edges adjacent to
this vertex) and uses a concept named α-nearness (minimum modi�cation of the
penalty associated to a vertex in order to change its degree in the 1-tree). The
resulting sparse network is connected, but not necessarily Hamiltonian (see e.g.
Figure 15).

This method can be applied to any symmetrical TSP but requires a computa-
tional time that increases quadratically, as shown on Figure 3.

When the distance between 2 cities is given by a general function (that can be
computed in constant time), it is challenging to �nd a good tour with a compu-
tational e�ort that increases less than quadratically. Obtaining a solution with
the nearest neighbour greedy heuristic, which is faster than Quick-Boruvka's one,
would take several days of computation for a 10 millions cities instance. Indeed,
these heuristics, or a pre-treatment procedure, require to compute all the distances,
meaning an algorithmic complexity in O(n2) for a problem with n cities.

Blazinskas and Misevicius have proposed a method for generating good candidate
sets by a technique called tour merging [9, 4, 7]. The method of [7] consists of
generating several solutions with a multi-random-start local search procedure. The
local search is based on 3-opt moves. It is speeded up by considering the 40 nearest
neighbours for each vertex, 10 in each quadrant. If implemented for non geometric
problem instance, the complexity of the tour merging techniques of [9, 4] are at
least quadratic.

The main goal of this article is to present how to build a list of good candidate
edges with a complexity lower than quadratic in the context of problem instances
given by a general function. The candidate edges are found with a technique ex-
ploiting tour merging and the POPMUSIC metaheuristic [29]. When these candidate



POPMUSIC FOR THE TSP 5

edges are provided along with an initial tour to a good local search engine like LKH,
high quality solutions can be found quite e�ciently.

The paper is organized as follows: Section 2 presents the POPMUSIC metaheuristic
and shows how it can be used in the context of the TSP. Section 3 presents a large
neighbourhood search (LNS [26, 23]) method for the TSP. The idea of LNS is to
gradually improve an initial solution by alternately destroying and repairing the
solution. Section 4 presents how to e�ciently generate candidate edges, allowing
the LKH implementation to rapidly produce very good solutions.

Computational results are presented in Section 5. The method is tested on vari-
ous problem types for which the value of optimum solutions are known or have been
estimated with a good precision: Euclidean 2D, clustered, uniform with toroidal
distances in 2D, 3D and 4D and regular grids in 5D. Such instances have been used
since they are the only ones of large size that are available or that can be easily
generated. Although these instances are geometrical ones, the proposed method
does not exploit their geometrical properties. The goal of this paper is to show
that good solutions to large instances can be obtained without exploiting the geo-
metrical properties, not to solve faster or get better solutions to such instances than
existing methods of the literature exploiting the geometrical properties. Concluding
remarks and future research avenues are presented in the last section.

2. POPMUSIC metaheuristic

The POPMUSIC metaheuristic was formalized in [29] on the base of work going
back to the early 1990s [27]. The basic idea of POPMUSIC is to locally optimise
sub-parts of a solution after a solution of the problem is available. These local
optimisations are repeated until no improvements are found.

For the TSP, the �rst idea coming to mind is to optimise the connections inside
a group of cities that are the closest to a given city. This option is not good
for TSPs with general distances. Indeed, identifying such a group would take a
computational e�ort in O(n). Since there are n di�erent groups to consider, the
global e�ort would be in O(n2). This is prohibitive for large instances.

So, we propose to optimise sub-paths of r consecutive cities. A tour on n cities
can be considered as a set of s1, . . . , sn sub-paths, each containing r cities. Sub-
path si contains the ith, i + 1th, i + rth cities (modulo n). This de�nition allows
to easily identify a sub-part of a solution. An optimised sub-path can be easily
replaced in the solution for improving it.

To avoid generating the same sub-problem two times, a set U of sub-paths is
stored (just by storing the �rst city of each sub-path). U contains sub-paths of r
cities that potentially can be improved. Once U is empty, all sub-problems have
been examined without success and the process stops.

Algorithm 1 presents the POPMUSIC metaheuristic with our adaptation to the
TSP.

This metaheuristic can, potentially, have very high complexity since set U is
not reduced at each iteration. However, several implementations [28, 21, 1, 2]
have shown empirically that the number of iterations of an algorithm based on
this metaheuristic increases almost linearly with the number of parts constituting
a solution. If the size r of the sub-problems to be optimised in POPMUSIC is �xed,
the empirical complexity of the method is almost linear in instance size.

Therefore, a major challenge when implementing a POPMUSIC-based algorithm is
building the initial solution with an algorithmic complexity as low as possible. The
solution need not be of very high quality, but its structure must be convenient for
being partially re-optimised.



6 ÉRIC D. TAILLARD AND KELD HELSGAUN

Algorithm 1: POPMUSIC metaheuristic for the TSP

Data: Initial tour T composed of n parts s1, . . . , sn
Result: Improved solution T
U = s1, . . . , sn;1

while U 6= ∅ do2

Select ss ∈ U ;3

Try to optimise the sub-path ss of r consecutive cities of the tour, �xing4

the �rst and last cities of the sub-path;
if Sub-path has been improved then5

Update solution T ;6

Add or replace in U all the sub-paths that have been modi�ed7

Remove ss from U ;8

Intuitively, since we have chosen to optimise sub-paths of a solution, the last
should avoid to contain two sub-paths that are located in completely di�erent por-
tions of the tour but containing cities that are close each others. Indeed, the sep-
arate optimisation of these sub-paths will not allow to re-organize correctly their
cities.

To translate the POPMUSIC metaheuristic into a (pseudo-) code for a given prob-
lem, several options must be chosen:

• How to obtain the initial solution
• Which optimisation method to use for optimising sub-paths
• Which sub-path from U to select

2.1. Obtaining an acceptable initial solution. Algorithm 2 is used for getting
an initial solution that is convenient for POPMUSIC. This algorithm can be imple-
mented with a relatively low complexity and avoid to produce solutions with very
long edges. Indeed, greedy methods like nearest neighbour or Burovka may include
very long edges during their last iterations.

Algorithm 2: Generating a feasible solution for large instances

Data: n cities, distance function d(i, j) between cities i and j, parameter
0 < a < n

Result: TSP tour T
Select a sample S of a cities, randomly, uniformly, among the n cities;1

Build a LK-optimal tour Ts on S;2

T = Ts3

for each city c /∈ S do4

cs = argmin(d(s, c)), (s ∈ S);5

Insert c just after cs in T ;6

for each city c ∈ Ts do7

Let nc be the number of cities inserted at previous step after c and after8

the city next to c in Ts;
Optimise in T a sub-path of nc cities starting from c with a 2-opt local9

search

The main steps of this algorithm are illustrated in Figure 4. In this �gure, the
tour on the sample S is given in bold and light colour. The complete tour is given
by a narrow, darker line. The complete tour is partially optimised, in a situation
where the last loop of Algorithm 2 is partially performed.



POPMUSIC FOR THE TSP 7

Figure 4. Building an initial solution adapted for POPMUSIC.
First, a tour is found on a sample of cities (bold line). Then,
the remaining cities are inserted after the closest of the sample,
creating clusters of cities. Finally, sub-paths including the cities
assigned to 2 consecutive clusters are optimised. The �gure shows
the situation when the cluster optimisation is partially performed.

2.1.1. Optimising sub-paths. Line 9 of Algorithm 2 as well as Line 4 of Algorithm 1
require procedures for optimising sub-paths. Sub-path optimisation can be trans-
formed into a TSP as follows: let r be the number of cities of a sub-path of length
L and dij the distance between cities i and j. Finding the shortest way to connect
the �rst and last cities of the path while visiting once all the cities of the path can
be solved as a TSP de�ned with distance matrix D, where index 1 and r refer to
the �rst and last city in the subpath:

D =


0 d12 + L d13 + L . . . 0

d21 + L 0 d23 . . . d2r + L
d31 + L d32 0 . . . d3r + L

...
...

...
. . .

...
0 dr2 + L dr3 + L . . . 0


The idea is to �x an edge between 1 and r by setting its length to 0. The other
edges from and to 1 and r are penalized by a relatively large value L.

2.1.2. Building a LK-optimal tour on a sample of the cities. For �nding a LK-
optimal solution on the sample at Line 2 of Algorithm 2, the LKH code could be an
alternative. However, this code is not very convenient to use inside another program
because it has been designed to be stand-alone and not callable. Preliminary results
have shown that it is not very useful to use leading methods either for solving TSP
on a sample of the cities or for optimising sub-paths.

To avoid implementation issues, we have used a very basic local search, based
on the LK neighbourhood, without building a graph of candidate edges (all edges
are retained). This algorithm uses a data structure called "satellite-cities" by [20].
This data structure can reverse a sub-path in constant time. This procedure can be
written in about a hundred lines of C code. Its empirical algorithmic complexity is



8 ÉRIC D. TAILLARD AND KELD HELSGAUN

F
ix
ed

F
ix
ed

Modi�ed Unchanged
Unch

anged

U status not a�ected

Path of r cities improved, /∈ U after

Next
path of r c

ities t
o opti

mize

Figure 5: After having optimised a sub-path of r cities, it can be removed from U , since it is
already LK-optimal. The 2 grey areas identify the starting cities of sub-paths that must be
included in U . If the sub-path is modi�ed, U can be managed in such a way that the next
sub-path to optimise is shifted only by one city.

2.3. Minimising POPMUSIC algorithmic complexity

For the TSP, the number of sub-problems to optimise in the POPMUSIC frame

increases empirically almost linearly with problem size (see Figure 7). So, get-

ting an initial solution with Algorithm 2 contributes most to the algorithmic

complexity. It can be derived as follows: let us �rst suppose that the com-

plexity of �nding a tour on a sample of a cities is in O(af ) and second that the

complexity for optimising sub-paths of 2n/a cities (on the average) is in O((na )
g).

Then, the algorithmic complexity of Algorithm 2 is in O(af + n · a+ a · (na )g).
The term n ·a comes from the fact that each of the n−a cities not in the sample
must identify the city of the sample that is the closest.

Therefore, one has to �nd a sample size a, expressed as a function of n, that

minimises the complexity of Algorithm 2. Choosing a = nh, the complexity of

the algorithm can be written as O(nfh + nh+1 + nh · ng−hg). Minimising this

complexity implies minimizing max(fh, h+ 1, g + (1− g)h).
Figure 6 provides the values of the 3 terms of this maximum as a function

of h, taking into account the empirical complexity of our LK-opt and 2-opt

13

Figure 5. After having optimised a sub-path of r cities, it can be
removed from U , since it is already LK-optimal. The 2 grey areas
identify the starting cities of sub-paths that must be included in
U . If the sub-path is modi�ed, U can be managed in such a way
that the next sub-path to optimise is shifted only by one city.

slightly less than cubic (O(n2.78)). By choosing a relatively small sample size (a ∼
n0.56, see Section 2.3), this procedure remains faster than the LKH implementation.
This procedure is also used for optimising sub-paths at Line 4 of Algorithm 1.

2.1.3. Optimising sub-paths of 2 clusters. The loop at Line 4 of Algorithm 2 creates
clusters of cities that are connected by sub-paths arbitrarily constructed. Line 9
requires optimising a times a relatively long sub-path that contains, on average,
2n/a cities. Using the above procedure would be too time consuming. Therefore,
we chose to optimise the paths that corresponds to 2 clusters of consecutive cities
with a simple local search based on a 2-opt neighbourhood. This local search also
uses the satellite cities data structure and has an empirical algorithmic complexity
in O(n2.29).

2.2. Selection of the next sub-path to optimise in POPMUSIC. In preceding
POPMUSIC implementations for the VRP, map labelling or location-routing prob-
lems, the next sub-problem to optimise was randomly chosen. For the TSP, the
process can be slightly speeded up by managing set U in such a way that the next
sub-path to optimise is shifted by only one city in case a modi�cation occurs. In-
deed, by treating �rst the last sub-path of cities optimised, one gets a longer and
longer portion of the complete tour for which all sub-paths of r consecutive cities
are LK-optimal.

When a sub-path containing r cities has been successfully optimised, the sub-
paths with starting cities that remain in the same order after optimisation need not
to be added in U . Indeed, these cities will belong to another sup-path to optimise
in the future. Figure 5 illustrates the management of set U .

2.3. Minimising POPMUSIC algorithmic complexity. For the TSP, the number
of sub-problems to optimise in the POPMUSIC metaheuristic increases empirically
almost linearly with instance size (see Figure 7). So, getting an initial solution
with Algorithm 2 contributes most to the algorithmic complexity. It can be derived
as follows: let us �rst suppose that the complexity of �nding a tour on a sample



POPMUSIC FOR THE TSP 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

2.78 · h

h+ 1

2.29− 1.29 · h

h

Figure 6: Degree of the polynomial for various steps of initial solution generation as a function
of h. The sample size is supposed to be in O(nh), �nding a 2-opt solution in O(n2.29) and a
LK local optimum solution in O(n2.78).

14

Figure 6. Degree of the polynomial for various steps of initial
solution generation as a function of h. The sample size is supposed
to be in O(nh), �nding a 2-opt solution in O(n2.29) and a LK local
optimum solution in O(n2.78).

of a cities is in O(af ) and second that the complexity for optimising sub-paths of
2n/a cities (on the average) is in O((na )

g). Then, the algorithmic complexity of

Algorithm 2 is in O(af + n · a+ a · (na )g). The term n · a comes from the fact that
each of the n− a cities not in the sample must identify the city of the sample that
is the closest.

Therefore, one has to �nd a sample size a, expressed as a function of n, that
minimises the complexity of Algorithm 2. Choosing a = nh, the complexity of the
algorithm can be written as O(nfh+nh+1+nh ·ng−hg). Minimising this complexity
implies minimizing max(fh, h+ 1, g + (1− g)h).

Figure 6 provides the values of the 3 terms of this maximum as a function of
h, taking into account the empirical complexity of our LK-opt and 2-opt imple-
mentations, which are f ' 2.78 and g ' 2.29. It can be seen that the value of h
minimising the maximum complexity is about 0.56. For h = 0.56, the value of the
maximum is 1.57. So, it is possible to implement Algorithm 2 with an empirical
complexity proportional to n1.57.

Using local search optimisation procedures with a lower complexity (for instance,
LKH with parameters such that f ' g ' 2) the maximum can be lowered up to
1.5 for h = 0.5. However, we have observed that, for problem instances whose size
is lower than few dozens of millions, the time spent in running LKH is higher than
the time spent in our procedures. Conversely, it is possible to use procedures for
optimising sub-paths with a higher complexity. While this complexity is such that
f, g < 2 +

√
2, producing an initial solution has a complexity lower than O(n2).

2.4. Empirical complexity of the algorithms proposed. For evaluating the
empirical complexity of the algorithms proposed, we have chosen samples of size
a = 1.5 · n0.56 for generating initial solutions. For the POPMUSIC algorithm, we
have chosen to optimise sub-paths of r = 50 cities. The algorithms were run on



10 ÉRIC D. TAILLARD AND KELD HELSGAUN

103 104 105 106 107

103

104

105

106

102

10

1

10−1

10−2

10−3

10−4

C
om

pu
ta
ti
on
al
ti
m
e
[s
] LKH (uniform), O(n1.42)

LKH (clustered), O(n1.22)

POPMUSIC O(n0.98)

Initial solution, O(n1.59)

Cluster, O(n1.55)

Sample, O(n1.44)

Instance size

Figure 7: Computational time for DIMACS instances as a function of problem size for each
step of the proposed method. Tour on a sample (Line 2 of Algorithm 2), creating clusters
(Line 4), generating the initial solution (Line 7) and optimising this solution with POPMUSIC
(Algorithm 1). The lines are interpolated polynomials, whose degree is indicated in the
caption. The correlation coe�cients of the interpolations are over 0.99 in all cases.

16

Figure 7. Computational time for DIMACS instances as a func-
tion of instance size for each step of the proposed method. Tour on
a sample (Line 2 of Algorithm 2), creating clusters (Line 4), gen-
erating the initial solution (Line 7) and optimising this solution
with POPMUSIC (Algorithm 1). The lines are interpolated poly-
nomials, whose degree is indicated in the caption. The correlation
coe�cients of the interpolations are over 0.99 in all cases.

DIMACS problem instances of type E (cities uniformly distributed on a square) and
C (clusters of cities on the Euclidean plane). Figure 7 provides the computational
time as a function of the instance size, for every step of the algorithm. Every
problem instance was solved 20 times.

We see in this �gure that building a tour on a sample of cities has the most versa-
tile computational time (and is also the fastest step) and the empirical complexity
of generating an initial solution (n1.61) is very close to the complexity predicted in
the previous section (n1.57). Re-optimising a solution with POPMUSIC seems to be
linear. For the smallest instances, POPMUSIC is 100 times slower than producing an
initial solution, while it is 10 times faster for the largest instances.

3. Large neighbourhood search for the TSP

Compared to state-of-the art algorithms such as LKH (see Figure 3), the algo-
rithm proposed in this article is quite fast for non-Euclidean instances. Naturally,
this speed must be considered in tandem with the quality of the solutions. It is
clear that methods limited to Euclidean instances can be much faster (for instance
those working on a space-�lling curve [22] or a Delaunay triangulation). Although
our method can be applied to any problem instance, it will certainly work very
poorly on instances with random distances.

3.1. Tour recomposition. A situation that may occur with our method is that
2 cities, relatively far from each other, are connected because they belong to two
successive clusters that are separated by a third cluster visited in a completely
di�erent portion of the tour. This undesirable situation is illustrated in Figure 8.



POPMUSIC FOR THE TSP 11

Figure 8. Example of occurrence of 2 bad and long edges in a
portion of a solution produced by POPMUSIC .

This could be prevented by trying to re-optimise sub-paths containing more cities
at line 9 of Algorithm 2 for getting the initial solution. For instance, one could try
to optimise sub-paths containing the cities of 6 or 7 clusters rather than 2. In such
a case, the computational time is multiplied by a factor higher than 10.

Another approach is to detect the use of long edges and to suppress them. The
TSP tour is separated out in a set of sub-paths. A possibly better solution can
be built by connecting these sub-paths di�erently. Sub-paths can be reconnected
together into another TSP tour as follows:

• Sub-paths containing 3 cities or less are replaced by isolated cities
• Sub-paths containing more than 3 cities are replaced by 3 cities

The distances between the cities of the new TSP are the same as the original
one in the �rst case. For the second case, let us call b the �rst city of a sub-path
with more than 3 cities and e the last city of this sub-path. Let us call r, s and t
the 3 cities that will replace the sub-path and i any city in the original problem.
Finally, let M be a large value and dbe (deb) the length of the sub-path from b to
e (respectively: from e to b). Then, the distances between cities i, r, s and t are
given by the next table.

i r s t
i � d(i, b) M d(e, i)
r d(b, i) � dbe M
s M deb � 0
t d(e, i) M 0 �

This tour recomposition can be seen as a large neighbourhood search [26, 23] (this
destroy-and-repair method is also called �x-and-optimise [12]). For implementing
this method, the edges to remove must be chosen. An option is to suppress the
longest edge of each sub-path of p consecutive cities in the initial TSP tour. For
reconnecting the sub-path into a complete TSP tour, a LK-based local search can
be used. When choosing p = n0.44, we have observed that the size of the new



12 ÉRIC D. TAILLARD AND KELD HELSGAUN

0

2

4

6

8

10

12

14

Uniform

Uniform reoptimized

Clustered

Clustered reoptimized

103 104 105 107106

%
E
xc
es
s

Instance size

Figure 9: Quality of solutions obtained with POPMUSIC for DIMACS uniform and clustered
instances either without or with re-optimisation of the solution.

means that the re-optimisation of a TSP with this method takes no more time

than the other steps of generating a complete TSP tour.

After having re-optimised a TSP tour with this �x-and-optimise method,

POPMUSIC can be reapplied to the new solution while improvements are found.

In practice, we have observed that this cycle is repeated only a few times in

practice (less than half a dozen).

Figure 9 gives the average deviation obtained by POPMUSIC with or without

re-optimisation, for DIMACS E and C problem instances. We see that for

clustered instances, an improvement of 2 to 3% can be obtained. For uniform

instances, this improvement is lower and asymptotically tends to 0. If better

solutions of good quality must be obtained rapidly, another technique must be

used.

19

Figure 9. Quality of solutions obtained with POPMUSIC for DI-
MACS uniform and clustered instances either without or with re-
optimisation of the solution.

TSP increases as O(n0.55) on DIMACS C and E instances. This means that the
re-optimisation of a TSP with this method takes no more time than the other steps
of generating a complete TSP tour.

After having re-optimised a TSP tour with this large neighbourhood search,
POPMUSIC can be reapplied to the new solution while improvements are found. In
practice, we have observed that this cycle is repeated only a few times in practice
(less than half a dozen).

Figure 9 gives the average deviation obtained by POPMUSIC with or without re-
optimisation, for DIMACS E and C problem instances. We see that for clustered
instances, an improvement of 2 to 3% can be obtained. For uniform instances, this
improvement is lower and asymptotically tends to 0. If better solutions of good
quality must be obtained rapidly, another technique must be used.

4. Generating candidate edges with tour merging

A well known technique to drastically reduce the search space for the TSP is to
consider a very small number of possible connections for each city. This is true both
for exact or heuristic methods. As a solution produced by POPMUSIC issues from
a highly randomised process, several successive runs of POPMUSIC generate several
di�erent solutions. Repeating this a few dozen times gets a subset of pertinent
connections for building high quality tours.

Figure 10 presents a moderately good solution obtained by POPMUSIC (without
using the improvement with a large neighbourhood search presented at the previous
section) as well as the union of 20 di�erent solutions obtained by this method for
the TSPLIB problem instance pr2392 (with 2392 cities). One optimal solution is
superimposed in the �gures. We see in Figure 10 that a POPMUSIC solution contains
a lot of edges that belong to an optimal tour. The union of 20 di�erent solutions
contains all but a couple of a given optimal tour edges.



POPMUSIC FOR THE TSP 13

(a) (b)

Figure 10. Solution obtained with a POPMUSIC run 10(a). Union
of 20 solutions found by POPMUSIC 10(b). One optimal solution is
indicated by bold and light colour lines. A solution obtained with
POPMUSIC, although being not very good, contains a high propor-
tion of the edges of the optimal tour. The union of 20 solutions
contains almost all the edges of the optimal tour.

Figure 11 provides an upper bound to the statistical distribution of the number
of missing edges as a function of the number of POPMUSIC solutions generated for
TSPLIB instance pr2392. Let us mention here that this instance has several optimal
tours. Two di�erent optimal tours may di�er by 60 edges 1. In Figure 11, the
number of missing edges is counted relatively to the optimum solution 1 . . . 2392.

For generating this �gure, hundreds of solutions were generated with POPMUSIC.
Then, the statistical distribution for various number of solutions generated is esti-
mated with a bootstrap technique. In this �gure, the distribution is indicated by
modulating the colour density. A dark colour indicates a high probability. This
�gure suggests that this technique can rapidly produce a subset of edges that are
good candidates for building excellent quality TSP tours.

The average degree of the vertices in the graph of Figure 10(b) is 6.58. This
degree is to compare to the average degree of a Delaunay triangulation which is
slightly lower than 6. For this problem instance, the optimal TSP tour has more
edges that do not belong to the Delaunay triangulation than edges that do not
belong to the union of 20 POPMUSIC solutions. Figure 12 provides the statistical

1One optimal tour is 1 . . . 2392. Another one is 1 . . . 246 249 . . . 253 248 247 254 . . . 315 317 316
318 . . . 364 366 365 367 . . . 421 424 . . . 465 472 471 466 . . . 470 473 . . . 605 607 606 608 . . . 655 657
656 658 . . . 704 706 705 707 . . . 768 775 774 769 . . . 773 776 . . . 960 422 423 961 . . . 1030 1032 1031
1033 . . . 1165 1172 1171 1166 . . . 1170 1173 . . . 1207 1214 1215 1208 . . . 1213 1216 . . . 1400 1407
1406 1401 . . . 1405 1408 . . . 1469 1471 1470 1472 . . . 1518 1520 1519 1521 . . . 1675 1678 . . . 1683
1676 1677 1684 . . . 1718 1725 1724 1719 . . . 1723 1726 . . . 1858 1860 1859 1861 . . . 1908 1910 1909
1911 . . . 1957 1959 1958 1960 . . . 2021 2028 2027 2022 . . . 2026 2029 . . . 2148 2150 2149 2151 . . . 2283
2290 2289 2284 . . . 2288 2291 . . . 2325 2332 2333 2326 . . . 2331 2334 . . . 2392



14 ÉRIC D. TAILLARD AND KELD HELSGAUN

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Number of solutions generated

N
um

b
er

of
ed
ge
s
m
is
si
ng

Figure 11: Distribution of the number of edges of the optimal solution not in the union of
solutions generated with POPMUSIC, as a function of the number of solutions generated. A dark
colour indicates a high probability distribution.

21

Figure 11. Distribution of the number of edges of the optimal
solution not in the union of solutions generated with POPMUSIC, as
a function of the number of solutions generated. A dark colour
indicates a high probability distribution.

0 10 20 30 40 50 60 70 80 90 100
Number of solutions

V
er
te
x
de
gr
ee

0

10

20

Figure 12: Evolution of vertex degree as a function of the number of solutions generated with
POPMUSIC. A darker colour indicates a higher number of vertices.

generated with POPMUSIC. Then, the statistical distribution for various number

of solutions generated is estimated with a bootstrap technique. In this �gure,

the distribution is indicated by modulating the colour density. A dark colour

indicates a high probability. This �gure suggests that this technique can rapidly

produce a subset of edges that are good candidates for building excellent quality

TSP tours.

The average degree of the vertices in the graph of Figure 10(b) is 6.58. This

degree is to compare to the average degree of a Delaunay triangulation which

is slightly lower than 6. For this problem instance, the optimal TSP tour has

more edges that do not belong to the Delaunay triangulation than edges that

do not belong to the union of 20 POPMUSIC solutions. Figure 12 provides the

statistical distribution of the vertex degree of the union of POPMUSIC solutions

as a function of the number of TSP solutions generated, for TSPLIB problem

instance pr2392. We see in this �gure that the average degree increases very

slightly with the number of solutions generated with POPMUSIC.

Figure 13 provides the distribution of the vertex degree for various problem

instances from the DIMACS library. We see in this �gure that the vertex degree

depends more on the instance type (clustered, uniform) than on the instance

size (from 105 to 107 cities).

In order to more deeply analyse the characteristics of the sub-graph induced

22

Figure 12. Evolution of vertex degree as a function of the number
of solutions generated with POPMUSIC. A darker colour indicates a
higher number of vertices.

distribution of the vertex degree of the union of POPMUSIC solutions as a function of
the number of TSP solutions generated, for TSPLIB problem instance pr2392. We
see in this �gure that the average degree increases very slightly with the number of
solutions generated with POPMUSIC.

Figure 13 provides the distribution of the vertex degree for various problem
instances from the DIMACS library. We see in this �gure that the vertex degree
depends more on the instance type (clustered, uniform) than on the instance size
(from 105 to 107 cities).

In order to more deeply analyse the characteristics of the sub-graph induced by
the union of 20 solutions produced by POPMUSIC, problem instances in larger dimen-
sions have been considered: instances randomly generated on the unit hypercube in



POPMUSIC FOR THE TSP 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

C100k.0
C316k.0
E100k.0
E316k.0
E1M.0
E3M.0
E10M.0

Vertex degree

P
ro
p
or
ti
on

Figure 13: Degree of vertices for few DIMACS problem instances for graphs that are the union
of 20 solutions generated with POPMUSIC.

5

6

7

8

9

10

11

12

13

Problem size

Av
er
ag
e
de
gr
ee

102 103 104 105 107106

Toroidal 2D

Toroidal 3D

Toroidal 4D

Regular 5D grid

Figure 14: Average degree of vertices for graphs that are the union of 20 solutions generated
with POPMUSIC. Uniformly distributed instances with toroidal distances in 2D, 3D and 4D and
regular grid instances in 5D.

23

Figure 13. Degree of vertices for few DIMACS problem instances
for graphs that are the union of 20 solutions generated with
POPMUSIC.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

C100k.0
C316k.0
E100k.0
E316k.0
E1M.0
E3M.0
E10M.0

Vertex degree

P
ro
p
or
ti
on

Figure 13: Degree of vertices for few DIMACS problem instances for graphs that are the union
of 20 solutions generated with POPMUSIC.

5

6

7

8

9

10

11

12

13

Instance size

Av
er
ag
e
de
gr
ee

102 103 104 105 107106

Toroidal 2D

Toroidal 3D

Toroidal 4D

Regular 5D grid

Figure 14: Average degree of vertices for graphs that are the union of 20 solutions generated
with POPMUSIC. Uniformly distributed instances with toroidal distances in 2D, 3D and 4D and
regular grid instances in 5D.

23

Figure 14. Average degree of vertices for graphs that are the
union of 20 solutions generated with POPMUSIC. Uniformly dis-
tributed instances with toroidal distances in 2D, 3D and 4D and
regular grid instances in 5D.

dimensions 2, 3, and 4 with toroidal distances (the opposite sides of the hypercube
are identi�ed) and instances on a regular, complete grid with integer coordinates
in an hypercube of dimension 5. For complete grids, the optimal solution length is
just equal to the instance size.



16 ÉRIC D. TAILLARD AND KELD HELSGAUN

Figure 14 provides the average degree of the vertices of the sub-graph induced
by the union of 20 solutions produced by POPMUSIC as a function of instance size.
We see in this �gure that the average degree is almost independent of the instance
size for randomly generated instances of size larger than 1000. However, the degree
depends strongly on the instance dimension.

This can be intuitively explained considering instances on regular grids in di-
mension K. For such instances, all vertices (except those on the border) have 2K
neighbours at distance 1. Thus, a pertinent sub-graph should have an average
vertex degree of 2K. For large instances with K = 5, we see in Figure 14 that
the degree is approximately 12.5. This means that POPMUSIC generates inaccurate
edges about 25% of the time for these instances. However, it is not clear why the
average degree decreases for toroidal instances of size higher than 105.

5. Numerical results

In the previous sections, we have seen that it is possible to generate sub-graphs
with a low algorithmic complexity. This section studies the pertinence of the edges
generated.

To evaluate this, the LKH code has been adapted with the ability to directly
read a set of edges with their weight (including an EDGE_FILE parameter). For
all the numerical results presented in this section, we have chosen sample sizes of
1.5·n0.56, sub-paths of 50 cities in POPMUSIC. The recomposition technique presented
in Section 3 has not been used. LKH is executed considering the edges obtained by
the union of 20 POPMUSIC solutions and with the following parameters:

• SUBGRADIENT = NO
• MAX_CANDIDATES = 0
• EDGE_FILE = . . .
• INITIAL_TOUR_FILE = . . .
• MAX_TRIALS = 60
• RUN = 1

The initial tour given to LKH is one of those obtained with POPMUSIC. Experiments
not reported here have shown that there is no clear correlation between the quality
of the initial solution provided and the �nal solution produced by LKH. Depending
on the instance, the correlation might even be slightly negative.

Tables 1 and 2 compare the solution quality and the computational time of the
proposed method versus the original version of LKH working with a sub-graph
obtained with 1-trees (standard parameters but: MAX_TRIALS = 60 and RUN
= 1). It must be stressed here that LKH produces much better results if used with
parameters exploiting the Euclidean property of the instances (see Figures 1 and
2). The 1st column gives the TSP size, the 2nd the optimum solution value (for
instances up to 3162 cities) or best solution known (published on [13]), the 3rd is
the computational time for producing 20 solutions with POPMUSIC, the 4th is the
total computational time of the proposed method, the 5th is the computational
time of standard LKH running with 1-trees and the last 2 columns compare the
solution quality obtained by the proposed method and LKH, expressed in % over
best known.

As shown in Figure 7, most of the computational time for standard LKH is
spent for �nding candidate edges with 1-trees. As the computational time was
prohibitive for instances with more than 105.5 cities, we have not run LKH with
standard parameters for these instances. For C instances, the preprocessing phase
of LKH was speeded up by setting INITIAL_PERIOD = 1000.

For uniform instances (Table 1), we see that running LKH using sub-graphs with
regular vertex degree of 5 obtained with 1-trees seems to be slightly better than



POPMUSIC FOR THE TSP 17

Instance size Best known Computational Time [s] %Excess
Sub-graph Total LKH Proposed LKH

1000 23101545.4 2.981 3.921 1.701 0.036 0.016
3162 40519926 9.406 17.54 16.4 0.062 0.022
10000 71865826 29.7 92.2 226 0.11 0.05
10000 72031630 29.9 82.3 225 0.08 0.03
10000 71822483 29.6 87.0 237 0.12 0.03
31623 127282138 95.3 427 2396 0.19 0.06
31623 126647285 95.2 470 2427 0.83 0.73
100000 224330692 325 1850 26860 0.88 0.76
100000 225654639 326 1805 27446 0.24 0.11
316228 401301206 1234 7821 262090 0.26 0.15
1000000 713187688 5250 31061 � 0.27 �
3162278 1267318198 27770 129866 � 0.28 �
10000000 2253088000 208195 611402 � 0.28 �
Table 1. Results for uniform (E) DIMACS instances. Computa-
tional time for producing 20 solutions with POPMUSIC, total time of
the method (LKH with 60 trials working of union of 20 POPMUSIC

solutions), time of LKH with standard parameters (not exploit-
ing the Euclidean property of the instances, 1 Run with 60 trials).
Quality of solutions produced by our method (% excess over best
solution known) and by standard LKH. For problems of size 1000
and 3162, the results are averaged for 10 (respectively: 5) instances.

Instance size Best known Computational Time [s] %Excess
Sub-graph Total LKH Proposed LKH

1000 11174460.5 3.24 4.18 4.13 0.11 0.10
3162 19147233.6 10.5 20.3 15.1 0.68 1.50
10000 33001034 33.1 85.4 68 0.72 3.31
10000 33186248 33.4 76.8 73.6 0.86 1.42
10000 33155424 33.2 71.1 73.9 0.25 0.42
31623 59545390 108 230 469 0.49 3.57
31623 59293266 107 264 455 0.79 2.29
100000 104617752 368 975 3457 1.16 4.56
100000 105390777 368 947 3467 0.85 7.47
316228 186870839 1372 3495 32018 0.98 9.44

Table 2. Results for clustered (C) DIMACS instances. Same in-
formation than for Table 1. However LKH was run with additional
parameter INITIAL_PERIOD = 1000 for speeding-up the prepro-
cessing time.

running it on sub-graphs obtained by the union of 20 POPMUSIC solutions. It is
however di�cult to compare the quality of both sub-graphs since LKH can produce
solutions with edges not present in the sub-graph obtained with 1-trees. LKH also
works on distances modi�ed by the 1-trees preprocessing. We see in this table
that the computational time is much lower with the POPMUSIC technique for large
problem instances.

For clustered instances (Table 2) the sub-graphs obtained with the union of 20
POPMUSIC solutions are clearly better than those obtained with 1-trees. This is
visualized in Figure 15.



18 ÉRIC D. TAILLARD AND KELD HELSGAUN

(a) (b)

Figure 15. Candidate set and solution obtained with LKH on
problem instance C10k.2 15(a). The candidate set is not Hamil-
tonian for this instance, leading to a �nal solution of poor quality.
Union of 20 solutions found by POPMUSIC 15(b) and solution ob-
tained by LKH on this candidate set.

Toroidal 2D

Toroidal 3D

Toroidal 4D

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

0.735

N
or
m
al
iz
ed

le
ng
th

(/
n
(K

−
1
)/

K
)

102 103 104 105 107106

Instance size

Figure 16: Normalized length of solutions obtained by the proposed method as a function of
problem size, for problem uniformly, randomly generated in the unit hypercube with toroidal
distances in 2D, 3D and 4D. Only one instance per problem size is considered to show the
dispersion of the length. The horizontal lines show the asymptotic optimal length found by [?
].

28

Figure 16. Normalized length of solutions obtained by the pro-
posed method as a function of instance size, for problem uniformly,
randomly generated in the unit hypercube with toroidal distances
in 2D, 3D and 4D. Only one instance of each size is considered to
show the dispersion of the length. The horizontal lines show the
asymptotic optimal length found by [17].



POPMUSIC FOR THE TSP 19

103 104 105 107106
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Instance size

%
E
xc
es
s

1-tree sub-graph

20 POPMUSIC solutions

Figure 17: Quality of solution produced by LKH with standard parameters (1-trees, 60 trials,
1 run) and the proposed method for regular grids in 5D.

29

Figure 17. Quality of solution produced by LKH with standard
parameters (1-trees, 60 trials, 1 run) and the proposed method for
regular grids in 5D.

The quality of the solutions produced by the proposed method was also evaluated
for uniformly generated problem instances in hypercubes of dimension 2, 3 and 4
with toroidal distances. Figure 16 provides the normalized length of the solutions
obtained by the proposed method as a function of instance size. For such instances
in dimension K, the normalized length is the length divided by n(K−1)/K . [17] have
estimated the optimal normalized lengths to 0.7124 ± 0.0002 for K = 2, 0.698 ±
0.0003 for K = 3 and 0.7234 ± 0.0003 for K = 4. For problem instances ranging
from 250 to more than 3 million cities, we have obtained average normalized length
of 0.7136, 0.699 and 0.7235 respectively (meaning, solution length 0.17% , 0.15%
and 0.011% above the predicted optimum).

Figure 16 shows that the quality of the solutions produced does not decrease
signi�cantly with instance size. For problem instances with more than half a million
cities, the solution length is, respectively, 0.27% , 0.11% and 0.055% above the
predicted optimum.

For problem instances on a regular grid in dimension 5, the gap to the optimum
solution value is given in Figure 17 as a function of instance size. The solutions
obtained are again at a fraction of % above the optimum. The method proposed
seems slightly better than LKH with standard parameters.

6. Conclusions

We have proposed a new general method for the travelling salesman problem
with a low empirical complexity, typically in O(n1.6). The method has generated
solutions of excellent quality (generally a fraction of % above the best solution
known) to all problem instances tested, whose size goes up to 10 million cities. The
method can be applied to any TSP instance for which the distance between 2 cities
can be computed in constant time. It does not make any assumption about the
problem structure.



20 ÉRIC D. TAILLARD AND KELD HELSGAUN

The method could be integrated in software like LKH or Concorde as a fast, gen-
eral preprocessing option. The general preprocessing based on 1-trees embedded in
LKH has an empirical complexity that seems to be quadratic and cannot be used
practically for instances with more than 105 cities. Moreover, the general prepro-
cessing based on 1-trees may produce sub-graphs of poor quality for non-uniform
problem instances. Faster and better preprocessing exists in leading software, but
can only be applied to geometrical problem instances.

Future work could be to try other techniques for reducing the complexity of the
method, for instance by implementing a recursive decomposition mechanism. The
method should also be tested on di�erent problem instances of large size, especially
on non geometrical ones.

Acknowledgement

This research was partially supported by the Swiss National Science Founda-
tion, project 200021_169085. We thank the anonymous reviewers for their careful
reading of our manuscript and their insightful comments and suggestions.

References

[1] Adriana C. F. Alvim and Éric D. Taillard. POPMUSIC for the point feature label placement
problem. European Journal of Operational Research, 192(2):396�413, 2009.

[2] Adriana C. F. Alvim and Éric D. Taillard. POPMUSIC for the world location routing problem.
EURO Journal on Transportation and Logistics, 2(3):231�254, 2013.

[3] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. Concorde: A
code for solving traveling salesman problems, 1999.

[4] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Travel-

ing Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton, NJ, USA, 2007.

[5] David L. Applegate, William Cook, and André Rohe. Chained Lin-Kernighan for Large Trav-
eling Salesman Problems. INFORMS Journal on Computing, 15(1):82�92, 2003.

[6] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509�517, 1975.

[7] Andrius Blazinskas and Alfonsas Misevicius. Generating high quality candidate sets by tour
merging for the traveling salesman problem. In Tomas Skersys, Rimantas Butleris, and Rita
Butkiene, editors, Information and Software Technologies: 18th International Conference

Proceedings, ICIST 2012, Kaunas, Lithuania, September 13-14, 2012, pages 62�73. Springer,
Berlin, Heidelberg, 2012.

[8] Jill Cirasella, David S. Johnson, Lyle A. McGeoch, and Weixiong Zhang. The Asymmetric
Traveling Salesman Problem: Algorithms, Instance Generators, and Tests. In Algorithm En-

gineering and Experimentation, Third International Workshop, ALENEX 2001, Washington,

DC, USA, January 5-6, 2001, Revised Papers, pages 32�59, 2001.
[9] Wiliam J. Cook and Paul Seymour. Tour merging via branch-decomposition. INFORMS

Journal on Computing, 15(3):233�248, 2003.
[10] William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Com-

putation. Princeton University Press, 2012.
[11] Boris Delaunay. Sur la sphère vide. Bulletin de l'Académie des Sciences de l'URSS. Classe

des sciences mathématiques et naturelles, 6:793�800, 1934.
[12] Stefan Helber and Sahling Florian. A �x-and-optimize approach for the multi-level capaci-

tated lot sizing problem. International Journal of Production Economics, 123:247�256, 2010.
[13] Keld Helsgaun. Best known solutions to Dimacs TSP instances. Last updated: October 6,

2014.
[14] Keld Helsgaun. General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical

Programming Computation, 1, 2009.
[15] Keld Helsgaun. Helsgaun's implementation of Lin-Kernighan, 2016. Version LKH-2.0.7.
[16] David S. Johnson, Lyle A. McGeoch, Fred Glover, and Cesar Régo. 8th dimacs implementa-

tion challenge: The traveling salesman problem. Technical report, Center for Discrete Math-
ematics and Theoretical Computer Science, Rutgers University, NJ, USA, 2000.

[17] David S. Johnson, Lyle A. McGeoch, and Edward E. Rothberg. Asymptotic experimental
analysis for the Held-Karp traveling salesman bound. In Proceedings of the 7th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 341�350, 1996.



POPMUSIC FOR THE TSP 21

[18] Shen Lin and Brian Wilson Kernighan. An e�ective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498�516, 1973.

[19] Peter Merz and Jutta Huhse. An iterated local search approach for �nding provably good
solutions for very large tsp instances. In Günter Rudolph, Thomas Jansen, Nicola Beume,
Simon Lucas, and Carlo Poloni, editors, Parallel Problem Solving from Nature � PPSN X,
pages 929�939, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[20] Colin Osterman and César Rego. Satellite list and new data structures for symmetric traveling
salesman problems. Technical report, Hearin Center for Enterprise Science, School of Business
Administration, University of Mississippi, University, MS 38677, USA, 2003.

[21] Alexander Ostertag, Karl F. Doerner, Richard F. Hartl, Éric D. Taillard, and Philippe Waelti.
POPMUSIC for a real-world large-scale vehicle routing problem with time windows. JORS,
60(7):934�943, 2009.

[22] Giuseppe Paeno. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen,
36(1):157�160, March 1890.

[23] David Pisinger and Stefan Ropke. Large neighborhood search. In Michel Gendreau and Jean-
Yves Potvin, editors, Handbook of Metaheuristics, pages 399�419. Springer US, Boston, MA,
2010.

[24] Abraham P. Punnen and Gregory Gutin. The Traveling Salesman Problem and Its Variations.
Combinatorial Optimization 12. Springer US, 1 edition, 2007.

[25] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling salesman prob-
lem heuristics: Leading methods, implementations and latest advances. European Journal of

Operational Research, 211(3):427 � 441, 2011.
[26] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing

problems. In 4th International Conference of Principles and Practice of Constraint Program-
ming, pages 417�431. Springer-Verlag, 1998.

[27] Éric D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,
23(8):661�673, 1993.

[28] Éric D. Taillard. Heuristic methods for large centroid clustering problems. J. Heuristics,
9(1):51�73, 2003.

[29] Éric D. Taillard and Stefan Voss. POPMUSIC: Partial optimization metaheuristic under
special intensi�cation conditions. In Celso C. Ribeiro and Pierre Hansen, editors, Essays and
surveys in Metaheuristics, pages 613�629. Kluwer Academic Publishers, 2001.

[30] Voigt, editor. Der Handlungsreisende wie er sein soll und was er zu thun hat, um Aufträge

zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiÿ zu sein ; Mit einem

Titelkupf. Voigt, Ilmenau, Germany, 1832.

(Éric D. Taillard) HEIG-VD, Department of Industrial Systems, University of Ap-

plied Sciences of Western Switzerland, Route de Cheseaux 1, Case postale 521,

CH-1401 Yverdon, Switzerland.

E-mail address: eric.taillard(at)heig-vd.ch

(Keld Helsgaun) Department of Computer Science, Roskilde University, DK-4000

Roskilde, Denmark

E-mail address: keld(at)ruc.dk


	1. Introduction
	2. POPMUSIC metaheuristic
	2.1. Obtaining an acceptable initial solution
	2.2. Selection of the next sub-path to optimise in POPMUSIC
	2.3. Minimising POPMUSIC algorithmic complexity 
	2.4. Empirical complexity of the algorithms proposed

	3. Large neighbourhood search for the TSP
	3.1. Tour recomposition

	4. Generating candidate edges with tour merging
	5. Numerical results
	6. Conclusions
	Acknowledgement
	References

